• Title/Summary/Keyword: Iterative independent component analysis algorithm

Search Result 3, Processing Time 0.018 seconds

A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

  • Lee, Dong-Sup;Cho, Dae-Seung;Kim, Kookhyun;Jeon, Jae-Jin;Jung, Woo-Jin;Kang, Myeng-Hwan;Kim, Jae-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.128-141
    • /
    • 2015
  • Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

An Introduction to Energy-Based Blind Separating Algorithm for Speech Signals

  • Mahdikhani, Mahdi;Kahaei, Mohammad Hossein
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.175-178
    • /
    • 2014
  • We introduce the Energy-Based Blind Separating (EBS) algorithm for extremely fast separation of mixed speech signals without loss of quality, which is performed in two stages: iterative-form separation and closed-form separation. This algorithm significantly improves the separation speed simply due to incorporating only some specific frequency bins into computations. Simulation results show that, on average, the proposed algorithm is 43 times faster than the independent component analysis (ICA) for speech signals, while preserving the separation quality. Also, it outperforms the fast independent component analysis (FastICA), the joint approximate diagonalization of eigenmatrices (JADE), and the second-order blind identification (SOBI) algorithm in terms of separation quality.

Blind Source Separation of Acoustic Signals Based on Multistage Independent Component Analysis

  • SARUWATARI Hiroshi;NISHIKAWA Tsuyoki;SHIKANO Kiyohiro
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.9-14
    • /
    • 2002
  • We propose a new algorithm for blind source separation (BSS), in which frequency-domain independent component analysis (FDICA) and time-domain ICA (TDICA) are combined to achieve a superior source-separation performance under reverberant conditions. Generally speaking, conventional TDICA fails to separate source signals under heavily reverberant conditions because of the low convergence in the iterative learning of the inverse of the mixing system. On the other hand, the separation performance of conventional FDICA also degrades significantly because the independence assumption of narrow-band signals collapses when the number of subbands increases. In the proposed method, the separated signals of FDICA are regarded as the input signals for TDICA, and we can remove the residual crosstalk components of FDICA by using TDICA. The experimental results obtained under the reverberant condition reveal that the separation performance of the proposed method is superior to that of conventional ICA-based BSS methods.

  • PDF