• Title/Summary/Keyword: Iterative codes

Search Result 147, Processing Time 0.028 seconds

Performance Improvement of the battening Effect of the new Asymmetric Turbo Codes (새로운 비대칭 구조를 갖는 터보부호의 Flattening Effect의 성능향상에 관한 연구)

  • 정대호;정성태;김환용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.533-539
    • /
    • 2002
  • It is well known the fact that turbo lodes has better performance as the number of iteration and the interleaver size increases in the AWGN channel environment. However, as the number of iteration and the interleaver size are increased, it is required much delay and computation for iterative decoding, and caused the flattening effect phenomenon which is very litter BER performance improvement at the arbitrary SNR. In this paper, We proposed the new asymmetric turbo codes, which consist of parallel concatenated turbo codes that use mixed types of component codes with different not only constraint length but also generate polynomial and analyzed its BER performance for log-MAP decoding algorithm with frame size of 128, 256, 512 and 1024 bits, and coding rate of 1/3. As a results of simulation, proposed asymmetric turbo codes verify that its BER performance is superior to conventional symmetric turbo codes. It can be also observed that the flattening effect phenomenon is very reduced by applying the proposed asymmetric turbo codes. It gains respectively 1.7dB ~2.5dB and 2.0dB~2.5dB SNR improvements in the case of short frame(128, 256) and large frame(512, 1024) size for the BER $10_{-4}$>/TEX> region.

Water-Methanol and Water-Acetonitrile Mixture Analysis using NIR Spectral Data and Iterative Target Transform Factor Analysis

  • Na, Dae-Bok;Hur, Yun-Jeong;Park, Young-Joo;Cho, Jung-Hwan
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1289-1289
    • /
    • 2001
  • Water-methanol and water-acetonitrile mixtures are frequently used as HPLC solvent system and strong hydrogen bonding is well-known. But a detailed aspect of water-methanol and/or water-acetonitrile mixtures have not been shown with direct spectral evidence. Recently, near infrared spectroscopy and chemometric data refinery have been successfully combined in many applications. On the basis of factor analytical methods, the spectral features of water-methanol and water-acetonitrile mixtures were studied to reveal the detail of mixtures. Water-methanol and water-acetonitrile mixtures were prepared with varying concentration of each constituent and near infrared spectral data were acquired in the range of 1100-2500nm with 2-nm interval. The data matrices were analysed with ITTFA(Iterative Target Transform Factor Analysis) algorithm implemented as MATLAB codes. As a result, the concentration profiles of water, methanol and water-methanol complex were resolved and the spectra of water-methanol complexes were calculated, which cannot be acquired with pure complexes. A similar result was obtained with NIR spectral data of water-acetonitrile mixtures. Moreover, pure spectra of hydrogen-bonding complexes of water-methanol and water-acetonitrile can be computed, while any other usual physical methods cannot isolated those complexes for acquiring pure component spectra.

  • PDF

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

Delta-form-based method of solving high order spatial discretization schemes for neutron transport

  • Zhou, Xiafeng;Zhong, Changming;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2084-2094
    • /
    • 2021
  • Delta-form-based methods for solving high order spatial discretization schemes are introduced into the reactor SN transport equation. Due to the nature of the delta-form, the final numerical accuracy only depends on the residuals on the right side of the discrete equations and have nothing to do with the parts on the left side. Therefore, various high order spatial discretization methods can be easily adopted for only the transport term on the right side of the discrete equations. Then the simplest step or other robust schemes can be adopted to discretize the increment on the left hand side to ensure the good iterative convergence. The delta-form framework makes the sweeping and iterative strategies of various high order spatial discretization methods be completely the same with those of the traditional SN codes, only by adding the residuals into the source terms. In this paper, the flux limiter method and weighted essentially non-oscillatory scheme are used for the verification purpose to only show the advantages of the introduction of delta-form-based solving methods and other high order spatial discretization methods can be also easily extended to solve the SN transport equations. Numerical solutions indicate the correctness and effectiveness of delta-form-based solving method.

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.

Iterative-R: A reliability-based calibration framework of response modification factor for steel frames

  • Soleimani-Babakamali, Mohammad Hesam;Nasrollahzadeh, Kourosh;Moghadam, Amin
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • This study introduces a general reliability-based, performance-based design framework to design frames regarding their uncertainties and user-defined design goals. The Iterative-R method extracted from the main framework can designate a proper R (i.e., response modification factor) satisfying the design goal regarding target reliability index and pre-defined probability of collapse. The proposed methodology is based on FEMA P-695 and can be used for all systems that FEMA P-695 applies. To exemplify the method, multiple three-dimensional, four-story steel special moment-resisting frames are considered. Closed-form relationships are fitted between frames' responses and the modeling parameters. Those fits are used to construct limit state functions to apply reliability analysis methods for design safety assessment and the selection of proper R. The frameworks' unique feature is to consider arbitrarily defined probability density functions of frames' modeling parameters with an insignificant analysis burden. This characteristic enables the alteration in those parameters' distributions to meet the design goal. Furthermore, with sensitivity analysis, the most impactful parameters are identifiable for possible improvements to meet the design goal. In the studied examples, it is revealed that a proper R for frames with different levels of uncertainties could be significantly different from suggested values in design codes, alarming the importance of considering the stochastic behavior of elements' nonlinear behavior.

An FPGA Implementation of High-Speed Flexible 27-Mbps 8-StateTurbo Decoder

  • Choi, Duk-Gun;Kim, Min-Hyuk;Jeong, Jin-Hee;Jung, Ji-Won;Bae, Jong-Tae;Choi, Seok-Soon;Yun, Young
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.363-370
    • /
    • 2007
  • In this paper, we propose a flexible turbo decoding algorithm for a high order modulation scheme that uses a standard half-rate turbo decoder designed for binary quadrature phase-shift keying (B/QPSK) modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Iterative codes such as turbo codes process the received symbols recursively to improve performance. As the number of iterations increases, the execution time and power consumption also increase. The proposed algorithm reduces the latency and power consumption by combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implement the proposed scheme on a field-programmable gate array and compare its decoding speed with that of a conventional decoder. The results show that the proposed flexible decoding algorithm is 6.4 times faster than the conventional scheme.

  • PDF

Iterative Decoding Algorithm for VLC Systems (가시광 통신 시스템을 위한 반복 복호 알고리즘)

  • Koo, Sung-Wan;Kim, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2766-2770
    • /
    • 2009
  • Recently, the Green IT is noticed because of the effects of greenhouse gas emissions, a drain on natural resources and pollution. In this paper, Visible Light Communication (VLC) systems with Turbo Coded scheme using LED is proposed and simulated in an optical wireless channel. As a forward error correction scheme to reduce information losses, turbo coding was employed. To decode the codewords, The Map (Maximum a Posteriori) algorism and SOVA (Soft Output Viterbi Algorithm) is used. The above mentioned schemes are described and simulation results are analyzed. As using turbo codes scheme, BER performance of proposed VLC systems is improved about 5 [dB].

Iterative Decoding far a Satellite Broadcasting Channel (위성 통신에서의 반복 복호 기법)

  • Lee, Jae-Sun;Park, Jae-Sun;Lee, Byoung-Moo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.309-313
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (CDMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated. We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) for satellite broadcasting communications is considered. In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical CDMA network can be substantially improved by increasing the interleaver length and the number of iterations in the decoding process. The results of this paper can be applied to implement the satellite broadcasting communications.

  • PDF

A turbo code with reduced decoding delay (감소된 복호지연을 갖는 Turbo Code)

  • 김준범;문태현;임승주;주판유;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1427-1436
    • /
    • 1997
  • Turbo codes, decoded through an iterative decoding algorithm, habe recently been shown to yidel remarkable coding gains close to theoretical limits in the Gaussian channel environment. This thesis presents the performance of Turbo code through the computer simulation. The performance of modified Turbo code is compared to that of the conventional Turbo codes. The modified Turbo code reduces the time delay in decoding with minimal effect to the performance for voice transmission sytems. To achieve the same performance, random interleaver the size of which is no less than the square root of the original one should be used. Also, the modified Turbo code is applied to MC-CDMA system, and its performance is analyzed under the Rayleigh Fading channel environment. In Rayleigh fading channel environment, due to the amplitude distortion caused by fading, the interleaver of the size twice no less than that in the Gaussian channel enironment was required. In overall, the modified Turbo code maintained the performance of the conventional Turbo code while the time delay in transmission and decoding was reduced at the rate of multiples of two times the squared root of the interleaver size.

  • PDF