• Title/Summary/Keyword: Iterative Training

Search Result 76, Processing Time 0.024 seconds

A Survey of Elementary school teachers' perceptions of mathematics instruction (수학수업에 대한 초등교사의 인식 조사)

  • Kwon, Sungyong
    • Education of Primary School Mathematics
    • /
    • v.20 no.4
    • /
    • pp.253-266
    • /
    • 2017
  • The purpose of the study was to investigate the perceptions of Elementary school teachers on mathematics instruction. To do this, 7 test items were developed to obtain data on teacher's perception of mathematics instruction and 73 teachers who take mathematical lesson analysis lectures were selected and conducted a survey. Since the data obtained are all qualitative data, they were analyzed through coding and similar responses were grouped into the same category. As a result of the survey, several facts were found as follow; First, When teachers thought about 'mathematics', the first words that come to mind were 'calculation', 'difficult', and 'logic'. It is necessary for the teacher to have positive thoughts on mathematics and mathematics learning, and this needs to be stressed enough in teacher education and teacher retraining. Second, the reason why mathematics is an important subject is 'because it is related to the real life', followed by 'because it gives rise to logical thinking ability' and 'because it gives rise to mathematical thinking ability'. These ideas are related to the cultivating mind value and the practical value of mathematics. In order for students to understand the various values of mathematics, teachers must understand the various values of mathematics. Third, the responses for reasons why elementary school students hate mathematics and are hard are because teachers demand 'thinking', 'because they repeat simple calculations', 'children hate complicated things', 'bother', 'Because mathematics itself is difficult', 'the level of curriculum and textbooks is high', and 'the amount of time and activity is too much'. These problems are likely to be improved by the implementation of revised 2015 national curriculum that emphasize core competence and process-based evaluation including mathematical processes. Fourth, the most common reason for failing elementary school mathematics instruction was 'because the process was difficult' and 'because of the results-based evaluation'. In addition, 'Results-oriented evaluation,' 'iterative calculation,' 'infused education,' 'failure to consider the level difference,' 'lack of conceptual and principle-centered education' were mentioned as a failure factor. Most of these factors can be changed by improving and changing teachers' teaching practice. Fifth, the responses for what does a desirable mathematics instruction look like are 'classroom related to real life', 'easy and fun mathematics lessons', 'class emphasizing understanding of principle', etc. Therefore, it is necessary to deeply deal with the related contents in the training courses for the improvement of the teachers' teaching practice, and it is necessary to support not only the one-time training but also the continuous professional development of teachers.

Bone Segmentation Method based on Multi-Resolution using Iterative Segmentation and Registration in 3D Magnetic Resonance Image (3차원 무릎 자기공명영상 내에서 영역화와 정합 기법을 반복적으로 이용한 다중 해상도 기반의 뼈 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • Recently, medical equipments are developed and used for diagnosis or studies. In addition, demand of techniques which automatically deal with three dimensional medical images obtained from the medical equipments is growing. One of the techniques is automatic bone segmentation which is expected to enhance the diagnosis efficiency of osteoporosis, fracture, and other bone diseases. Although various researches have been proposed to solve it, they are unable to be used in practice since a size of the medical data is large and there are many low contrast boundaries with other tissues. In this paper, we present a fast and accurate automatic framework for bone segmentation based on multi-resolutions. On a low resolution step, a position of the bone is roughly detected using constrained branch and mincut which find the optimal template from the training set. Then, the segmentation and the registration are iteratively conducted on the multiple resolutions. To evaluate the performance of the proposed method, we make an experiment with femur and tibia from 50 test knee magnetic resonance images using 100 training set. The proposed method outperformed the constrained branch and mincut in aspect of segmentation accuracy and implementation time.

Suitability Evaluation Method for Both Control Data and Operator Regarding Remote Control of Maritime Autonomous Surface Ships (자율운항선박 원격제어 관련 제어 데이터와 운용자의 적합성 평가 방법)

  • Hwa-Sop Roh;Hong-Jin Kim;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.214-220
    • /
    • 2024
  • Remote control is used for operating maritime autonomous surface ships. The operator controls the ship using control data generated by the remote control system. To ensure successful remote control, three principles must be followed: safety, reliability, and availability. To achieve this, the suitability of both the control data and operators for remote control must be established. Currently, there are no international regulations in place for evaluating remote control suitability through experiments on actual ships. Conducting such experiments is dangerous, costly, and time-consuming. The goal of this study is to develop a suitability evaluation method using the output values of control devices used in actual ship operation. The proposed method involves evaluating the suitability of data by analyzing the output values and evaluating the suitability of operators by examining their tracking of these output values. The experiment was conducted using a shore-based remote control system to operate the training ship 'Hannara' of Korea National Maritime and Ocean University. The experiment involved an iterative process of obtaining the operator's tracking value for the output value of the ship's control devices and transmitting and receiving tracking data between the ship and the shore. The evaluation results showed that the transmission and reception performance of control data was suitable for remote operation. However, the operator's tracking performance revealed a need for further education and training. Therefore, the proposed evaluation method can be applied to assess the suitability and analyze both the control data and the operator's compliance with the three principles of remote control.

Deisgn of adaptive array antenna for tracking the source of maximum power and its application to CDMA mobile communication (최대 고유치 문제의 해를 이용한 적응 안테나 어레이와 CDMA 이동통신에의 응용)

  • 오정호;윤동운;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2594-2603
    • /
    • 1997
  • A novel method of adaptive beam forming is presented in this paper. The proposed technique provides for a suboptimal beam pattern that increases the Signal to Noise/Interference Ratio (SNR/SIR), thus, eventually increases the capacity of the communication channel, under an assumption that the desired signal is dominant compared to each component of interferences at the receiver, which is precoditionally achieved in Code Division Multiple Access (CDMA) mobile communications by the chip correlator. The main advantages of the new technique are:(1)The procedure requires neither reference signals nor training period, (2)The signal interchoerency does not affect the performance or complexity of the entire procedure, (3)The number of antennas does not have to be greater than that of the signals of distinct arrival angles, (4)The entire procedure is iterative such that a new suboptimal beam pattern be generated upon the arrival of each new data of which the arrival angle keeps changing due tot he mobility of the signal source, (5)The total amount of computation is tremendously reduced compared to that of most conventional beam forming techniques such that the suboptimal beam pattern be produced at vevery snapshot on a real-time basis. The total computational load for generating a new set of weitht including the update of an N-by-N(N is the number of antenna elements) autocovariance matrix is $0(3N^2 + 12N)$. It can further be reduced down to O(11N) by approximating the matrix with the instantaneous signal vector.

  • PDF

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Development of Five Finger type Myoelectric Hand Prosthesis for State Transition-Based Multi-Hand Gestures change (다중 손동작 변환을 위한 상태 전이 기반 5손가락 근전전동의수 개발)

  • Seung-Gi Kim;Sung-Yoon Jung;Beom-ki Hong;Hyun-Jun Shin;Kyoung-Ho Kim;Se-Hoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.67-76
    • /
    • 2024
  • Various types of assistive devices have been developed for upper limb amputees over the years, with myoelectric prosthesis particularly aimed at improving user convenience by enabling a range of hand gestures beyond simple grasping, tailored to the size and shape of objects. In this study, we developed a five-finger myoelectric prosthesis mimicking human hand size and finger movements, utilizing motor and worm gear mechanisms for stable and independent operation. Based on this, we designed a control system for independent finger control through electromyographic signal input, proposed a state transition-based hand gesture conversion algorithm by selecting representative eight hand gestures and defining conversion condition parameters. We introduced training and usability evaluation methods, and conducted usability assessments among upper limb amputees using dedicated tools, confirming the potential for commercial application of the algorithm and observing adaptive capabilities and high performance through iterative evaluations.