• Title/Summary/Keyword: Iteration scheme

Search Result 242, Processing Time 0.025 seconds

A Study of Dynamic Behavior of Track and Train Interaction on Rail Open Gap (레일 개구부에서의 궤도-차량 상호작용에 대한 연구)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu;Cho, Sun Kyu;Han, Sang Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.345-355
    • /
    • 2007
  • During winter, the CWR (continuous welded rail) may be broken when a temperature drop below the neutral level changes the axial force, causing tensile fracture and creating a rail gap. The passage of a train on a rail with an open gap may lead to very costly derailments. In this paper, the use of a track-and-train-coupled model whose rail has an open gap is proposed for dynamic interaction analysis. Linear track and train systems were coupled in this study by a nonlinear Herzian contact spring, and the complete system matrices of the total track-train system were constructed. Moreover, the interaction phenomenon considering the presence of an open gap in the rail was toughly defined by assigning the irregularity functions between the two sides of the gap. Time history analysis, which has an iteration scheme such as the Newmark-$\beta$ method (based on the Modified Newton-Raphson methods), was conducted to solve the nonlinear equation. .Finally, numerical studies were conducted to assess the effect of the various parameters of the system when applied to various speeds, open-gap sizes, and support stiffnesses of the rail.

CA Joint Resource Allocation Algorithm Based on QoE Weight

  • LIU, Jun-Xia;JIA, Zhen-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2233-2252
    • /
    • 2018
  • For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution (LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain the optimal resource allocation scheme. This paper proposes a joint resource allocation algorithm based on the weights of user's average quality of experience (JRA-WQOE). In contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation abilities of different users and consider user fairness. An optimization model is established by considering the user quality of experience (QoE) with the aim of maximizing the total user rate. In this model, user QoE is quantified by the mean opinion score (MOS) model, where the average MOS value of users is defined as the weight factor of the optimization model. The JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for users with different carrier aggregation capacities, and the latter, which is based on the Lagrangian dual method, is used to optimize the power allocation process. Simulation results showed that the proposed JRA-WQOE algorithm has low computational complexity and fast convergence. Compared with existing algorithms, it affords obvious advantages such as improving the average throughput and fairness to users. With varying numbers of users and signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values than prevalent algorithms.

Performance and Iteration Number Statistics of Flexible Low Density Parity Check Codes (가변 LDPC 부호의 성능과 반복횟수 통계)

  • Seo, Young-Dong;Kong, Min-Han;Song, Moon-Kyou
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.189-195
    • /
    • 2008
  • The OFDMA Physical layer in the WiMAX standard of IEEE 802.16e adopts 114 LDPC codes with various code rates and block sizes as a channel coding scheme to meet varying channel environments and different requirements for transmission performance. In this paper, the performances of the LDPC codes are evaluated according to various code rates and block-lengths throueh simulation studies using min-sum decoding algorithm in AWGN chamois. As the block-length increases and the code rate decreases, the BER performance improves. In the cases with code rates of 2/3 and 3/4, where two different codes ate specified for each code rate, the codes with code rates of 2/3A and 3/4B outperform those of 2/3B and 3/4A, respectively. Through the statistical analyses of the number of decoding iterations the decoding complexity and the word error rates of LDPC codes are estimated. The results can be used to trade-off between the performance and the complexity in designs of LDPC decoders.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Development of Vision Control Scheme of Extended Kalman filtering for Robot's Position Control (실시간 로봇 위치 제어를 위한 확장 칼만 필터링의 비젼 저어 기법 개발)

  • Jang, W.S.;Kim, K.S.;Park, S.I.;Kim, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • It is very important to reduce the computational time in estimating the parameters of vision control algorithm for robot's position control in real time. Unfortunately, the batch estimation commonly used requires too murk computational time because it is iteration method. So, the batch estimation has difficulty for robot's position control in real time. On the other hand, the Extended Kalman Filtering(EKF) has many advantages to calculate the parameters of vision system in that it is a simple and efficient recursive procedures. Thus, this study is to develop the EKF algorithm for the robot's vision control in real time. The vision system model used in this study involves six parameters to account for the inner(orientation, focal length etc) and outer (the relative location between robot and camera) parameters of camera. Then, EKF has been first applied to estimate these parameters, and then with these estimated parameters, also to estimate the robot's joint angles used for robot's operation. finally, the practicality of vision control scheme based on the EKF has been experimentally verified by performing the robot's position control.

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

Density Evolution Analysis of RS-A-SISO Algorithms for Serially Concatenated CPM over Fading Channels (페이딩 채널에서 직렬 결합 CPM (SCCPM)에 대한 RS-A-SISO 알고리즘과 확률 밀도 진화 분석)

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.27-34
    • /
    • 2005
  • Iterative detection (ID) has proven to be a near-optimal solution for concatenated Finite State Machines (FSMs) with interleavers over an additive white Gaussian noise (AWGN) channel. When perfect channel state information (CSI) is not available at the receiver, an adaptive ID (AID) scheme is required to deal with the unknown, and possibly time-varying parameters. The basic building block for ID or AID is the soft-input soft-output (SISO) or adaptive SISO (A-SISO) module. In this paper, Reduced State SISO (RS-SISO) algorithms have been applied for complexity reduction of the A-SISO module. We show that serially concatenated CPM (SCCPM) with AID has turbo-like performance over fading ISI channels and also RS-A-SISO systems have large iteration gains. Various design options for RS-A-SISO algorithms are evaluated. Recently developed density evolution technique is used to analyze RS-A-SISO algorithms. We show that density evolution technique that is usually used for AWGN systems is also a good analysis tool for RS-A-SISO systems over frequency-selective fading channels.

A PAPR Reduction Technique by the Partial Transmit Reduction Sequences (부분 전송 감소열에 의한 첨두대 평균 전력비 저감 기법)

  • Han Tae-Young;Yoo Young-Dae;Choi Jung-Hun;Kwon Young-Soo;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.562-573
    • /
    • 2006
  • It is required to reduce the peak-to-average power ratio(PAPR) in an orthogonal frequency division multiplexing system or a multicarrier system. And it is needed to eliminate the transmission of the side information in the Partial Transmit Sequences. So, in this paper, a new technique is proposed, where the subcarriers used for the multiple signal representation are only utilized for the reduction of PAPR to eliminate the burden of transmitting the side information. That is, it is proposed by taking the modified minimization criteria of partial transmit sequences scheme instead of using the convex optimization or the fast algorithm of tone reservation(TR) technique As the result of simulation, the PAPR reduction capability of the proposed method is improved by 3.2 dB dB, 3.4 dB, 3.6 dB with M=2, 4, 8(M is the number of partition in the so-called partial transmit reduction sequences(PTRS)), when the iteration number of fast algorithm of TR is 10 and the data rate loss is 5 %. But it is degraded in the capability of PAPR reduction by 3.4 dB, 3.1 dB, 2.2 dB, comparing to the TR when the data rate loss is 20 %. Therefore, the proposed method is outperformed the TR technique with respect to the complexity and PAPR reduction capability when M=2.

Study on the Business Process Modeling scheme using the Context Analysis methodology (상황 분석 방법론을 적용한 효율적 비즈니스 프로세스 모델링 방안에 관한 연구)

  • You, Chi-Hyung;Sang, Sung-Kyung;Kim, Jung-Jae;Na, Won-Shik
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.661-667
    • /
    • 2008
  • The dynamics of business cycles has been changed by the macroscopic economic forces because of the introduction of new technical know-how each year. These the dynamics of business has a significant influence on the investment of enterprise in the information communication field. Today, the most important goal of the IT investment is simply not to lower the production cost any more, but to improve the usefulness for the customers and partners in order to obtain the optimized mass products. Therefore, the enterprises have been concentrating their all abilities on the automation, integration, and optimization of business process using BPM. In addition, they are concentrating their efforts on the business expansion by approaching the technical aspect using RFID application system. However, in order to accomplish a successful enterprise ability, the technical view, business process view, and organization view must be considered together. We suggested the method considering organization view, via the technical element, i.e., RFID system for approaching the business process. Furthermore, we tried the optimization of assignment using Context Analysis methodology and proposed the method to reduce the element with respect to the time, human, and expense by applying the Case Study method that minimizes the iteration times through the transmitted processing procedure and type. The proposed method gave us the expectation that it will bring out the innovative improvement with respect to the time, expense, quality, and customer's satisfaction in the process from the analysis of business process to the analysis and design of system.

  • PDF

Review on the Three-Dimensional Inversion of Magnetotelluric Date (MT 자료의 3차원 역산 개관)

  • Kim Hee Joon;Nam Myung Jin;Han Nuree;Choi Jihyang;Lee Tae Jong;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • This article reviews recent developments in three-dimensional (3-D) magntotelluric (MT) imaging. The inversion of MT data is fundamentally ill-posed, and therefore the resultant solution is non-unique. A regularizing scheme must be involved to reduce the non-uniqueness while retaining certain a priori information in the solution. The standard approach to nonlinear inversion in geophysis has been the Gauss-Newton method, which solves a sequence of linearized inverse problems. When running to convergence, the algorithm minimizes an objective function over the space of models and in the sense produces an optimal solution of the inverse problem. The general usefulness of iterative, linearized inversion algorithms, however is greatly limited in 3-D MT applications by the requirement of computing the Jacobian(partial derivative, sensitivity) matrix of the forward problem. The difficulty may be relaxed using conjugate gradients(CG) methods. A linear CG technique is used to solve each step of Gauss-Newton iterations incompletely, while the method of nonlinear CG is applied directly to the minimization of the objective function. These CG techniques replace computation of jacobian matrix and solution of a large linear system with computations equivalent to only three forward problems per inversion iteration. Consequently, the algorithms are efficient in computational speed and memory requirement, making 3-D inversion feasible.