• Title/Summary/Keyword: Iteration number

Search Result 353, Processing Time 0.023 seconds

Efficient Iteration Control Method with low complexity and New Interleaver for Turbo Codes (터보 부호에서 낮은 복잡도를 갖는 효율적인 반복부호 제어기법과 새로운 인터리버)

  • 김순영;장진수;성락주;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1254-1264
    • /
    • 2000
  • In this paper, we propose a new turbo interleaver and an efficient iteration control method with low complexity for turbo decoding. Turbo codes has better performance as the number of iteration and the interleaver size increases. However, as the interleaver size is increased, it require much delay and computation for decoding. Thus we propose a new efficient turbo magic interleaver using the Magic square matrix. Simulation results show that the proposed interleaver realizes a good performance like GF, Mother interleaver proposed to IMT-2000. And as the decoding approaches the performance limit, any further iteration results in very little improvement. Therefore, we propose an efficient algorithm of decoding that can reduce the delay and computation. Just like the conventional stop criterion, it effectively stop the iteration process with very little performance degradation.

  • PDF

Improvement of Subspace Iteration Method with Shift (쉬프트를 갖는 부분공간 반복법의 개선)

  • Jung, Hyung Jo;Kim, Man Cheol;Park, Sun Kyu;Lee, In Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.473-486
    • /
    • 1998
  • A numerically stable technique to remove the limitation in choosing a shift in the subspace iteration method with shift is presented. A major difficulty of the subspace iteration method with shift is that because of singularity problem, a shift close to an eigenvalue can not be used, resulting in slower convergence. This study solves the above singularity problem using side conditions without sacrifice of convergence. The method is always nonsingular even if a shift is an eigenvalue itself. This is one of the significant characteristics of the proposed method. The nonsingularity is proved analytically. The convergence of the proposed method is at least equal to that of the subspace iteration method with shift, and the operation counts of above two methods are almost the same when a large number of eigenpairs are required. To show the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Iteration-based Array Analysis for Conceptual Design of Active Sonar Arrays (능동 소나 배열의 개념 설계를 위한 반복법 기반 배열 해석)

  • Noh, Eunghwy;Chun, Wonjong;Ohm, Won-Suk;Been, Kyounghun;Moon, Wonkyu;Chang, Woosuk;Yoon, Hongwoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-233
    • /
    • 2017
  • The array equations are commonly used for analysis and conceptual design of active sonar projector arrays. Calculation of the radiation impedance matrix poses a major computational bottleneck for the solution of the array equations, which leads to a dramatic increase in computational load as the number of constituent transducers increases. Here, we propose an iteration-based solution method that does not require the calculation of the radiation impedance matrix, as a computationally efficient alternative to the status quo. The validity of the iteration-based analysis is judged against the full finite-element analysis that includes the entire array as well as the medium. The array equations for the 1/3-sector of a cylindrical array comprised of 48 Tonpilz transducers are augmented by the lumped element models, and are solved iteratively for the acoustic and electro-mechanical characteristics. The iteration-based analysis exhibits rapid convergence and accuracy comparable with the FE analysis. Simulations also reveal that the acoustic coupling between transducers has more pronounced effects on the electro-mechanical characteristics of individual transducers than the acoustic performance of the array.

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.

Efficient Alalysis of Resistive Networks With Canonical Piecewise-Linear Equations (정규 구간선형 방정식을 갖는 저항성 회로의 효율적인 해석)

  • 조준영;조진국;권용세;김영환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.142-151
    • /
    • 1994
  • This paper proposes new algorithms to solve canonical piecewise-linear equations with linear partitions and illustrates their efficiency through the analysis of resistive network. The basic idea of the proposed algorithm is to find the best next guess, closest to the actual solution, at each Newton-Raphson (N-R) iteration by comparing the images of nest guess candidates and that of the actual solution. The proposed algorithm can reduce the number of the N-R iterations rquired for convergence greatly, compared to the actual solution, at each Newton-Raphson (N-R) iteration by comparing the images of next guess candidates and that of the actual solution. The proposed algorithm can reduce the number of the N-R iterations required for convergence greatly, compared to the Katzenelson algorithm. When applied to analyzing test circuits, the proposed algorithm required 8 to 20 times fewer N-R iterations and 5 to 10 times less CPU time than the Katzenelson algorithm, depending on the size of the circuits. The experimental results also exhibit that the efficiency of the proposed algorithm over the Katzenelson algorithm increases as the number of the piecewise-linear regions for the representation of the circuit.

  • PDF

The design method for a vector codebook using a variable weight and employing an improved splitting method (개선된 미세분할 방법과 가변적인 가중치를 사용한 벡터 부호책 설계 방법)

  • Cho, Che-Hwang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.462-469
    • /
    • 2002
  • While the conventional K-means algorithms use a fixed weight to design a vector codebook for all learning iterations, the proposed method employs a variable weight for learning iterations. The weight value of two or more beyond a convergent region is applied to obtain new codevectors at the initial learning iteration. The number of learning iteration applying a variable weight must be decreased for higher weight value at the initial learning iteration to design a better codebook. To enhance the splitting method that is used to generate an initial codebook, we propose a new method, which reduces the error between a representative vector and the member of training vectors. The method is that the representative vector with maximum squared error is rejected, but the vector with minimum error is splitting, and then we can obtain the better initial codevectors.

Implementation of Stopping Criterion Algorithm using Variance Values of LLR in Turbo Code (터보부호에서 LLR 분산값을 이용한 반복중단 알고리즘 구현)

  • Jeong Dae-Ho;Kim Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.149-157
    • /
    • 2006
  • Turbo code, a kind of error correction coding technique, has been used in the field of digital mobile communication system. As the number of iterations increases, it can achieves remarkable BER performance over AWGN channel environment. However, if the number of iterations is increased in the several channel environments, any further iteration results in very little improvement, and requires much delay and computation in proportion to the number of iterations. To solve this problems, it is necessary to device an efficient criterion to stop the iteration process and prevent unnecessary delay and computation. In this paper, it proposes an efficient and simple criterion for stopping the iteration process in turbo decoding. By using variance values of LLR in turbo decoder, the proposed algerian can largely reduce the average number of iterations without BER performance degradation in all SNR regions. As a result of simulation, the average number of iterations in the upper SNR region is reduced by about $34.66%{\sim}41.33%$ compared to method using variance values of extrinsic information. the average number of iterations in the lower SNR region is reduced by about $13.93%{\sim}14.45%$ compared to CE algorithm and about $13.23%{\sim}14.26%$ compared to SDR algorithm.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

A Use-Case Based Object-Oriented Project Scheduling Technique (Use-Case 기반 객체지향 프로젝트 스케줄링 기법)

  • 허진선;최시원;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.293-307
    • /
    • 2003
  • Object-oriented development has been generalized, but object-oriented project planning and scheduling techniques have not been studied enough. Furthermore, it is difficult to apply the conventional software management techniques to object-oriented projects. Especially, the large scaled projects are increasing, but the project planing techniques for these large scaled projects have not been proposed enough. In this paper, we propose systematic techniques for OO based project scheduling. We suggest a 7 step-process for deriving the OO project schedule from the use-case diagram which is describing the functional requirements of the system. The proposed process includes identifying use-cases, drawing preliminary chart through interdependency analysis, identifying characteristics of each use case, determining the number of iteration, assigning use-cases to iteration, considering available resource and constraints, drawing revised PERT chart. Each step has the explanation of the input, output, and the guidelines needed to perform the step. The project scheduling technique proposed in this paper ran be used effectively in the planning phase which the purpose is to plan a development schedule to yield the high quality software in minimum time.

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.