• 제목/요약/키워드: Isotropic pitch fiber

검색결과 25건 처리시간 0.021초

Modification of isotropic coal-tar pitch by acid treatments for carbon fiber melt-spinning

  • Yoo, Mi Jung;Ko, Hyo Jun;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.247-254
    • /
    • 2014
  • In this work, thermal treatment accompanied with different acid treatments was applied to a commercial coal tar pitch (CTP) to obtain a spinnable precursor pitch for carbon fiber. In the case of thermal treatment only, a relatively high reaction temperature of between $380^{\circ}C$ and $400^{\circ}C$ was required to obtain a softening point (SP) range of $220^{\circ}C-260^{\circ}C$ and many meso-phase particles were created during the application of high reaction temperature. When nitric acid or sulfuric acid treatment was conducted before the thermal treatment, the precursor pitch with a proper SP range could be obtained at reaction temperatures of $280^{\circ}C-300^{\circ}C$, which were about $100^{\circ}C$ lower than those for the case of thermal treatment only. With the acid treatments, the yield and SP of the precursor pitch increased dramatically and the formation of meso-phase was suppressed due to the lower reaction temperatures. Since the precursor pitches with acid and thermal treatment were not spinnable due to the inhomogeneity of properties such as molecular weight distribution and viscosity, the CTP was mixed with ethanol before the consecutive nitric acid and thermal treatments. The precursor pitches with ethanol, nitric acid, and thermal treatments were easily spinnable, and their spinning and carbon fiber properties were compared to those of air blowing and thermal treated CTP.

Activated Carbon Fibers from Chemically Modified Coal Tar Pitches

  • Ryu, S.K.;Shim, J.W.;Yang, K.S.;Mochida, I.
    • Carbon letters
    • /
    • 제1권1호
    • /
    • pp.6-11
    • /
    • 2000
  • Coal tar pitch was chemically modified with 10 wt% benzoquinone (BQ) to raise the softening point of isotropic pitch precursor and the precursor was melt-spun into pitch fibers, stabilized, carbonized and activated with steam at $900^{\circ}C$. The weight loss of carbon fiber-benzoquinone (CF-BQ) increased with the increase of activation time like other fibers, but was lower than those of Kureha fiber at the same activation time in spite of larger geometric surface area. Those adsorption isotherms fitted into 'Type I' according to Brunauer, Deming, Deming and Teller classification. However, there was very thin low-pressure hysteresis that lower closure points of the hysteresis are about 0.42-0.45. From the pore size distribution curves, there might be some micropores having narrow-necked bottle; a series of interconnected pore is more likely than discrete bottles. FT-IR studies showed that the functional groups such as carboxyl, quinone, and phenol were introduced to ACFs-BQ surface after steam activation. Methylene blue decolorization and iodine adsorption capacity of ACF-BQ increased linearly with the increase of specific surface area and was larger than that of ACF-Kureha at the same specific surface area.

  • PDF

납사분해공정 잔사유로부터 탄소재료용 전구체 핏치의 제조 (Preparatoin of Precursor Pitch for Carbon Applications from Naphtha Cracking Residues)

  • 김명수;김상렬;황종식
    • 한국응용과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.77-87
    • /
    • 1997
  • PFO(pyrolized fuel oil) and $C_{10}^{+}$ oil, which are the residual heavy oils form a NCC(naphtha cracking center), were heat-treated to produce the precursor-pitch for carbon materials. After PFO was initially distilled near $300^{\circ}C$ to separate the volatile matters recovering as high-quality fuel oil, the residuum of nonvolatile precursor-pitch was then thermally pyrolized in the temperature ranges from $350^{\circ}C$ to $450^{\circ}C$. Spinnable isotropic pitch with the softening point of $200^{\circ}C$ and the toluene insolubles of 36wt% was obtained at $365^{\circ}C$, and then was successfully spun through a spinneret(0.5mm diameter). After spinning, an isotropic carbon fiber of $25{\mu}m$ diameter was obtained via oxidation and craboniation procedures. Mesophase spherules began to be observed from the product pitch pyrolized at $400^{\circ}C$, and bulk mesophase with a flow texture was observed above $420^{\circ}C$. In the case of $C_{10}^{+}$ was the feed was polymerized in the presence $H_2SO_4$ at room temperature to increase the molecular weight and then heat-treated gradually up to $200{\sim}250^{\circ}C$. The products obtained with the softening point of $80{\sim}190^{\circ}C$ were carbonized at 500 and $1000^{\circ}C$ to examine the morphology.

${CO}_2$ gas및 공기중에서 피치계 탄소섬유의 산화거동 (The Oxidation Behavior of Pitch based Carbon Fibers in ${CO}_2$ Gas and Air)

  • 노재승;서동수
    • 한국재료학회지
    • /
    • 제7권2호
    • /
    • pp.121-128
    • /
    • 1997
  • 이방성과 등방성을 갖는 두 종류의 피치계 탄소섬유를 TGA장치를 이용하여 $CO_{2}$gas와 공기중에서 등온산화반응을 실시하였다. $CO_{2}$ gas보다 공기중에서의 산화가 훨씬 빠르게 일어났으며, $600^{\circ}C$공기중에서 등방성 T-10IS섬유는 이방성 HM-60섬유보다 23.9배나 빠른 산화속도를 보였다. 실험적으로 구한 활성화에너지를 저온에서 36-56Kcal/mole의 값을 가지며, 고온에서는 6-13Kcal/mole의 값을 나타내었다. 반응기구(zone 1,2,3)의 천이도는 T-10IS섬유보다 HM-60 섬유가 높았으며, 공기중에서보다 $CO_{2}$ gas분위기에서 더 높게 나타났다. SEM으로 관찰된 표면상변화로부터 탄소섬유의 산화반응은 섬유의 결함을 따라 진행된다는 것을 알 수 있었다.

  • PDF

탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질 (Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch)

  • 김명철;엄상용;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제43권6호
    • /
    • pp.745-750
    • /
    • 2005
  • 등방성 피치계 탄소섬유 및 활성탄소섬유를 얻기 위한 프리커서 피치를 제조하기 위하여 NCB(naphtha cracking bottoms) oil을 열처리온도, 처리시간, 질소유량을 변화시키면서 개질하였다. 개질된 피치의 수율, 연화점, 원소분석, 분자량분포를 측정하고 용융방사하여 최적의 개질조건을 얻었다. 질소유량 1.25 vvm, 열처리온도 $380^{\circ}C$, 처리시간 3 h 일 때 약 $240^{\circ}C$의 연화점을 갖는 방사성이 우수한 프리커서 피치를 제조할 수 있었다. 이때의 수율은 약 21 wt%, C/H 몰비는 1.07에서 1.34로, 방향족화도는 0.85에서 0.88으로 증가하였고, 벤젠 및 퀴놀린 불용분은 각각 30.0 wt%, 1.5 wt% 이었다, 방사 온도는 프리커서 피치의 연화점보다 약 $50^{\circ}C$ 높았으며 분자량은 250~1,250 범위에 분포되어 있지만 80% 이상은 250~700의 좁은 범위에 몰려있었다.