• 제목/요약/키워드: Isotropic Dispersion

검색결과 46건 처리시간 0.02초

Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium

  • Kakar, Rajneesh
    • Interaction and multiscale mechanics
    • /
    • 제6권3호
    • /
    • pp.287-300
    • /
    • 2013
  • In this paper, the effect of impulsive line on the propagation of shear waves in non-homogeneous elastic layer is investigated. The rigidity and density in the intermediate layer is assumed to vary quadratic as functions of depth. The dispersion equation is obtained by using the Fourier transform and Green's function technique. The study ends with the mathematical calculations for transmitted wave in the layer. These equations are in complete agreement with the classical results when the non-homogeneity parameters are neglected. Various curves are plotted to show the effects of non-homogeneities on shear waves in the intermediate layer.

Extremely Low Numerical Dispersion FDTD Method Based on H(2, 4) Scheme for Lossy Material

  • Oh, Il-Young;Hong, Yongjun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • 제13권3호
    • /
    • pp.158-164
    • /
    • 2013
  • This paper expands a previously proposed optimized higher order (2, 4) finite-difference time-domain scheme (H(2, 4) scheme) for use with lossy material. A low dispersion error is obtained by introducing a weighting factor and two scaling factors. The weighting factor creates isotropic dispersion, and the two scaling factors dramatically reduce the numerical dispersion error at an operating frequency. In addition, the results confirm that the proposed scheme performs better than the H(2, 4) scheme for wideband analysis. Lastly, the validity of the proposed scheme is verified by calculating a scattering problem of a lossy circular dielectric cylinder.

A Numerical Analysis on Elastodynamic Dispersion Phenomena of Composite Pipes

  • Cho, Youn-Ho;Lee, Chong-Myong;Rose Joseph L.
    • 비파괴검사학회지
    • /
    • 제25권3호
    • /
    • pp.222-227
    • /
    • 2005
  • An efficient technique fur the calculation of guided wave dispersion curves in composite pipes is presented. The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process required when using the more traditional partial wave superposition technique. The formulation of each method is outlined and compared. The forward-calculating formulation is used to develop finite element software for dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures, including an isotropic bar, two multi-layer composite bars, and a composite pipe.

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

ELASTIC GUIDED WAVES IN COMPOSITE PIPES

  • Cho Younho;Lee Joon-Hyun;Lee Chong Myong;Rose Joseph L.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.258-263
    • /
    • 2004
  • An efficient technique for the calculation of guided wave dispersion curves in composite pipes is presented. The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process required when using the more traditional partial wave superposition technique The formulation of each method is outlined and compared. The forward-calculating formulation is used to develop finite element software for dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures, including an isotropic bar, two multi-layer composite bars, and a composite pipe.

  • PDF

등방성 판의 동적 변분-점근적 해석 (A Dynamic Variational-Asymptotic Procedure for Isotropic Plates Analysis)

  • 이수빈;이창용
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.72-79
    • /
    • 2021
  • The present paper aims to set forth a two-dimensional theory for the dynamics of plates that is valid over a large range of excitation. To construct a dynamic plate theory within the long-wavelength approximation, two dimensional-reduction procedures must be used for analyzing the low- and high-frequency behaviors under the dynamic variational-asymptotic method. Moreover, a separate and logically independent step for the short-wavelength regime is introduced into the present approach to avoid violation of the positive definiteness of the derived energy functional and to facilitate qualitative description of the three-dimensional dispersion curve in the short-wavelength regime. Two examples are presented to demonstrate the capabilities and accuracy of all of the formulas derived herein by using various dispersion curves through comparison with the three-dimensional finite element method.

열적으로 성충화된 횡단류에 분류된 제트의 난류확산 거동 (II) (Turbulent Dispersion Behavior of a Jet issued into Thermally Stratified Cross Flows (II))

  • 김상기;김경천
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1434-1443
    • /
    • 1999
  • The turbulent fluctuations of temperature and two components of velocity have been measured with hot- and cold-wires in the Thermally Stratified Wind Tunnel(TSWT). Using the fin-tube heat exchanger type heaters and the neural network control algorithm, both stable ($dT/dz=109.4^{\circ}C$) and unstable ($dT/dz=-49.1^{\circ}C$) stratifications were realized. An ambient air jet was issued normally into the cross flow($U_{\infty}=1.0 m/s$) from a round nozzle(d = 6 mm) flushed at the bottom waII of the wind tunnel with the velocity ratio of $5.8(U_{jet}/U_{\infty})$. The characteristics of turbulent dispersion in the cross flow jet are found to change drastically depending on the thermal stratification. Especially, in the unstable condition, the vertical velocity fluctuation increases very rapidly at downstream of jet. The fluctuation velocity spectra and velocity-temperature cospectra along the jet centerline were obtained and compared. In the case of stable stratification, the heat flux cospectra changes Its sign from a certain point at the far field because of the restratification phenomenon. It is inferred that the main reason in the difference between the vertical heat fluxes is caused by the different length scales of the large eddy motions. The turbulent kinetic energy and scalar dissipation rates were estimated using partially non-isotropic and isotropic turbulent approximation. In the unstable case, the turbulent energy dissipation decreases more rapidly with the downstream distance than in the stable case.

Thin Wire와 SRR을 이용한 3D 등방성 Metamaterial Bulk 구조 설계 및 분석 (Design and Analysis of 3D Isotropic Metamaterial Bulk Structure Using Thin Wire and SRR)

  • 김충주;이범선
    • 한국전자파학회논문지
    • /
    • 제22권9호
    • /
    • pp.919-925
    • /
    • 2011
  • 본 논문에서는 thin wire와 SRR(Split Ring Resonator)을 이용하여 유전율과 투자율을 동시에 제어할 수 있는 3D 등방성 단일 셀을 설계하고 분석해 살펴보았다. 등방성을 갖는 3D bulk 구조를 설계하기 위해서는 모든 면에서 바라본 bulk의 구조 특성이 매우 유사해야 한다. 이러한 구조를 구현하기 위하여 본 논문에서는 thin wire와 상하좌우가 모두 대칭인 SRR 구조를 설계하였으며, 이를 3D bulk 구조에 적용한 결과 8.72 GHz에서 모든 방향(x, y, z방향)에 대하여 유효 상대 유전율이 약 -0.6, 유효 상대 투자율이 약 -1.5, 그리고 굴절율이 -0.95인 3D 등방성 bulk가 설계되었다. 계산된 Brillouin 분산 다이어그램도 제안된 구조가 등방성에 유사하다는 것을 보여주었다.

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams

  • Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.213-223
    • /
    • 2019
  • For the first time, longitudinal and transverse wave propagation of triclinic nanobeam is investigated via a size-dependent shear deformation theory including stretching effect. Furthermore, the influence of initial stress is studied. To consider the size-dependent effects, the nonlocal strain gradient theory is used in which two small scale parameters predict the behavior of wave propagation more accurately. The Hamiltonian principle is adopted to obtain the governing equations of wave motion, then an analytic technique is applied to solve the problem. It is demonstrated that the wave characteristics of the nanobeam rely on the wave number, nonlocal parameter, strain gradient parameter, initial stress, and elastic foundation. From this paper, it is concluded that the results of wave dispersion in isotropic and anisotropic nanobeams are almost the same in the presented case study. So, in this case, triclinic nanobeam can be approximated with isotropic model.