• Title/Summary/Keyword: Isotope effects

Search Result 193, Processing Time 0.022 seconds

Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1997-2002
    • /
    • 2011
  • The nucleophilic substitution reactions of dicyclohexyl phosphinic chloride [3; $cHex_2$P(=O)Cl] with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 60.0 $^{\circ}C$. The anilinolysis rate is too slow to be rationalized by the stereoelectronic effects. The rate is contrary to expectations for the electronic influence of the two ligands and exhibits exceptionally great negative deviation from the Taft's eq. The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines invariably change from primary normal ($k_H/k_D$ > 1; max $k_H/k_D$ = 1.10 with X = 4-MeO) with the strongly basic anilines (X = 4-MeO, 4-Me, 3-Me) to secondary inverse ($k_H/k_D$ < 1; min $k_H/k_D$ = 0.673 with X = 3-Cl) with the weakly basic anilines (X = H, 4-F, 4-Cl, 3-Cl). A concerted $S_N2$ mechanism is proposed on the basis of both secondary inverse and primary normal DKIEs. The obtained DKIEs imply that the fraction of a frontside attack increases as the aniline becomes more basic. A hydrogen-bonded, four-center-type transition state is suggested for a frontside attack, while the trigonal bipyramidal pentacoordinate transition state is suggested for a backside attack.

Stoichiometric Solvation Effects. Solvolysis of Isopropylsulfonyl Chloride

  • Koo, In-Sun;Yang, Ki-Yull;Shin, Hyeon-Bae;An, Sun-Kyoung;Lee, Jong-Pal;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.699-703
    • /
    • 2004
  • Solvolyses of isopropylsulfonyl chloride (IPSC) in water, D_2O,\;CH_3OD$, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25, 35 and 45$^{\circ}C$. The Grunwald-Winstein plot of first-order rate constants for the solvolytic reaction of IPSC with $Y_{Cl}$ (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small slope (m < 0.30). The extended Grunwald-Winstein plots for the solvolysis of IPSC show better correlation. The kinetic solvent isotope effects determined in water and methanol are in consistent with the proposed mechanism of the general base catalyzed and/or $S_AN/S_N2$ reaction mechanism for IPSC solvolyses based on mass law and stoichiometric solvation effect studies.

Kinetics and Mechanism of the Anilinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4361-4365
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(N,N-dimethylamino) phosphinic chloride (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $65.0^{\circ}C$. The anilinolysis rate of 3 is rather slow to be rationalized by the conventional stereoelectronic effects. The magnitudes of ${\rho}_X$ (= -6.42) and ${\beta}_X$ (= 2.27) values are exceptionally great. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D$ = 0.69-0.96). A concerted $S_N2$ mechanism involving a backside attack is proposed on the basis of secondary inverse DKIEs and the variation trend of the $k_H/k_D$ values with X. The anilinolyses of six phosphinic chlorides in MeCN are briefly reviewed by means of DKIEs, steric effects of the two ligands, positive charge of the reaction center phosphorus atom, and selectivity parameters to obtain systematic information on phosphoryl transfer reaction mechanism.

The Improved Method for Precise Determination of Pu Isotope Ratio using MC-ICP-MS (다중검출기유도결합플라즈마질량분석기를 이용한 Pu 동위원소비 정밀 분석법)

  • Yim, Seong-A;Han, Eun-Mi;Chae, Jung-Seok;Yun, Ju-Young
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.117-123
    • /
    • 2010
  • Plutonium is by far the most important of the transuranic elements which have been released into the environment due to radio-toxicity and long term radiation effects on humans. And Pu isotope ratio ($^{240}Pu/^{239}Pu$) is of great interest because this ratio is used as a fingerprint for different sources. Mass spectrometry has been used as an useful atom counting technique with several advantages over decay counting techniques for the determination of Pu isotopes. It enables a determination of Pu isotope ratio in the environmental samples with a low detection limit and a short determination time. An ICP-MS is the representative mass spectrometry for Pu determination. In this study, the precision of $^{240}Pu/^{239}Pu$ isotope ratio was improved by using 4 multiple ion counters of MC-ICP-MS. The detection limit of $^{239}Pu$ and $^{240}Pu$ were $0.10\;fg\;ml^{-1}$ ($0.24\;{\mu}Bq\;ml^{-1}$), $0.12\;fg\;ml^{-1}$ ($0.97\;{\mu}Bq\;ml^{-1}$), respectively. The relative standard deviation of $^{240}Pu/^{239}Pu$ isotope ratio was less than 1 % in trace level. The various reference materials (seawater, soil and sediment) were analyzed to verify this method and their analytical results were in good agreement with the certified (or recommended value) value.

Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15N-NO3 and δ15N-NH4) (질산염 및 식물플랑크톤의 안정동위원소비를 이용한 팔당호 수계내의 질소원 기원 연구)

  • Kim, Min-Seob;Lee, Eun-Jeong;Yoon, Suk-Hee;Lim, Bo-La;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.452-458
    • /
    • 2017
  • The nitrogen isotope value in both ammonium and nitrate ion were determined at 9 stations during both June and August 2016, in order to understand the origin of DIN at the Han river. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in 8 stations (CP, SB, MHC, P4, SJ, SBC, P2, SC) were no significant variation. However ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in KK (Kyeongan stream) showed significant different in comparison with 8 stations, with an apparent increase of nitrogen isotope values. These results indicate that antropogenic nitrogen source influence on KK station. Also the ${\delta}^{13}C$ and ${\delta}^{15}N$ isotope ratio of phytoplankton (Diatom and Cyanobacteria) in KK (Kyeongan stream) showed heavier values, compared to other study stations. These results indicate that nitrogen isotope value in phytoplankton effects by different nitrogen source in study sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of dissolved inorganic nitrogen origin in aquatic environments.

Effects of Plantain (Plantago lanceolata L.) Herb and Heat Exposure on Plasma Glucose Metabolism in Sheep

  • Al-Mamun, M.;Tanaka, C.;Hanai, Y.;Tamura, Y.;Sano, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.894-899
    • /
    • 2007
  • An experiment was conducted using a [6, 6-$^2H$]glucose isotope dilution method to determine the effects of plantain (Plantago lanceolata L.) on plasma glucose metabolism in sheep taken from a thermoneutral environment and exposed to a hot environment. The sheep were fed either mixed hay (MH) of orchardgrass (Dactylis glomerata L.) and reed canarygrass (Phalaris arundinacea L.) at a 60:40 ratio or MH and plantain (PL) at a 9:1 ratio in a crossover design for each 23-day period. In both dietary treatments the metabolizable energy (ME) and crude protein intake were designed to be isoenergetic and isoproteinous at around maintenance level. The sheep were taken from a thermoneutral environment ($20^{\circ}C$, 70% RH) and exposed to a hot environment ($28-30^{\circ}C$, 70% RH) for 5 days. The isotope dilution method using a single injection of [6, 6-$^2H$]glucose was performed on the $18^{th}$ day of the thermoneutral environment and on the $5^{th}$ day of heat exposure. Plasma glucose pool size was numerically lower (p = 0.26) during heat exposure on both dietary treatments, and numerically higher (p = 0.13) on the MH diet irrespective of environmental temperature. Plasma NEFA concentration (p = 0.01) and glucose turnover rate (p = 0.03) were decreased during heat exposure, but remained similar between diets. It could be concluded that, although no positive impact of plantain on glucose metabolism was found under the present experimental conditions (plantain constituted only 10% of basal diet), plantain herb is an alternative to MH for rearing sheep in both thermoneutral and hot environments.