• Title/Summary/Keyword: Isotope effect

Search Result 242, Processing Time 0.026 seconds

Theoretical Study of Isotope and Cation Binding Effects on the Hydration of BDNA

  • Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.1
    • /
    • pp.24-28
    • /
    • 1981
  • Theoretical studies of the sodium cation binding and the isotope hydration effects on the static model compound B-DNA have been qualitatively elucidated by using empirical potential energy functions. In the first place, the sodium cations bound to phosphate anions and their hydration scheme have been optimized and have given a reasonable agreement with other theoretical results and experimental studies. In the second stage, the isotope effect on the hydration through the substitution of $D_2O\;for\;H_2O$ has been carried out by the same procedure. The stabilization of B-DNA has been explained and compared in terms of the sodium cation binding to phosphate anions and its hydration in both cases of $H_2O\;and\;D_2O$.

Enrichment of Magnesium Isotopes by Monoazacrown Bonded Merrifield Peptide Resin.

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.570-574
    • /
    • 2001
  • Magnesium isotope separation was investigated by chemical ion exchange with the 1-aza-12-crown-4 bonded Merrifield peptide resin using an elution chromatographic technique. The capacity of the novel azacrown ion exchanger was 1.0 meq/g dry resin. The heavier isotopes of magnesium were enriched in the resin phase, while the lighter isotopes were enriched in the solution phase. The single stage separation factor was determined according to the method of Glueckauf from the elution curve and isotopic assys. The separation factors of $^{24}Mg^{2+}$-$^{25}Mg^{2+}$, $^{24}Mg^{2+}$-$^{26}Mg^{2+}$, and $^{25}Mg^{2+}$-$^{26}Mg^{2+}$ were 1.008, 1.019, and 1.006, respectively.

The Studies on Substituent and Kinetic Solvent Isotope Effect in Solvolyses of Phenyl Chloroformates

  • 구인선;이지선;양기열;강금덕;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.573-576
    • /
    • 1999
  • The rate constants and kinetic solvent isotope effects (KSIE, KMeOH/kMeOD) for solvolyses of para-substituted phenylchloroformates in CH3OH, CH3OD, H2O, D2O, 50% D2O-CH3OD were determined at 15.0 and 25.0℃ using conductometric method. Kinetic solvent isotope effects for the solvolyses of para-substituted phenyl chloroformates were 2.39-2.51, 2.21-2.28, and 1.67-1.69 for methanol, 50% aqueous methanol, and water, respectively. The slopes of Hammett plot for solvolysis of para-substituted phenyl chloroformates in methanol, 50% aqueous methanol, and water were 1.49, 1.17 and 0.89, respectively. The Hammett type plot of KSIE, log (KSIE) versus p, can be a useful mechanistic tool for solvolytic reactions. The slopes of such straight lines for para-substituted phenyl chloroformates are almost zero in methanol, 50% aqueous methanol, and water. It was shown that the reaction proceeds via an associative SN2 and/or general base catalysis addition-elimination (SAN) mechanism based on activation parameters, Hammett p values, and slopes of Hammett type plot of KS-IE.

Simulation Study of Optimizing Multicusp Magnetic Line Configurations for a Negative Hydrogen Ion Source

  • Kim, Jae-Hong;Hong, Seong-Gwang;Kim, Jong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.1-250.1
    • /
    • 2014
  • A multicusp ion source has been used widely in negative hydrogen cyclotrons mainly for radioisotope productions. The ion source is designed to have cusp geometries of magnetic field inside plasma chamber, where ions are confining and their mean lifetimes increase. The magnetic confinement produced a number of permanent magnetic poles helps to increase beam currents and reduce the emittance. Therefore optimizing the number of magnets confining more ions and increasing their mean lifetime in plasma has to be investigated in order to improve the performance of the ion source. In this work a numerical simulation of the magnetic flux density from a number of permanent magnets is carried to optimize the cusp geometries producing the highest plasma density, which is clearly indicated along the full-line cusp geometry. The effect of magnetic fields and a number of poles on the plasma structure are investigated by a computing tool. The electron confinement effect becomes stronger and the density increases with increasing the number of poles. On the contrary, the escape of electrons from the loss cone becomes more frequent as the pole number increases [1]. To understand above observation the electron and ion's trajectories along with different cusp geometries are simulated. The simulation has been shown that the optimized numbers of magnets can improve the ion density and uniformity.

  • PDF

Car-Parrinello Molecular Dynamics Study for the Isotope Effect on OH Vibration in Ice Ih

  • Yoon, Yeohoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.553-557
    • /
    • 2013
  • The stretching vibration of OH of ice Ih is studied by Car-Parrinello molecular dynamics in regarding the effect of mixed H/D contamination while the vibrational spectrum is considered by velocity-velocity autocorrelations of the sampled ensemble. When hydrogen atoms are immersed randomly into the deuterated ice, a typical vibrational frequency of OH stretching mode is observed to be similar to that from the pure $H_2O$ ice. When focusing on the correlation of isolated neighboring OH stretching, a narrower and blue shifted peak is observed at the high frequency range as a result of the screening from the complex many body correlations by $D_2O$ environment. It is also specifically related to the symmetric intermolecular correlations between neighboring OH stretching modes. More enhanced high frequency range can be explained by the expansion of such two body correlations to collective many body correlations among all possible OH stretching modes. This contribution becomes important when it involves in chemical interactions via excitation of such vibrational states.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.

Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry (동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용)

  • ;;;增田彰正
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.190-201
    • /
    • 2001
  • Isotope Dilution Mass Spectrometry(IDMS) is one of the analytical method which uses enriched isotope spikes and analyzes the abundance of element by comparison of the spectrum between spiked mass and non-spike mass. Especially, the Thermal Ion Mass Spectrometry with isotope dilution technique (in general ID-TIMS) is the most accurate method of the chemical analysis, which enables us to obtain the data better than 1% in accuracy and precision. In IDMS, enriched isotope spike is one of the most important factor in order to obtain the best data. For rare earth elements, in general, a mixture of /sup 138/La, /sup 142/Ce, /sup 145/Nd, /sup 149/Sm, /sup 151/Sm, /sup 151/Eu, /sup 157/Gd, /sup 163/Dy, /sup 167/Er, /sup 171/Yb, and /sup 176/Lu is used as composite spike. IDMS is very useful in geochronology and REE geochemistry. Especially, it is very effective in studying the “tetrad effect” of rare earth elements in natural samples.

  • PDF

Kinetics and Mechanism of Anilinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3274-3278
    • /
    • 2012
  • The kinetic studies on the reactions of phenyl N-phenyl phosphoramidochloridate (8) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) have been carried out in acetonitrile at $60.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are huge secondary inverse ($k_H/k_D$ = 0.52-0.69). A concerted mechanism is proposed with a backside attack transition state (TS) on the basis of the secondary inverse DKIEs and the variation trends of the $k_H/k_D$ values with X. The degree of bond formation in the TS is really extensive taking into account the very small values of the DKIEs. The steric effects of the two ligands on the rates are extensively discussed for the aminolyses of the chlorophosphate-type substrates on the basis of the Taft equation.

Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4403-4407
    • /
    • 2011
  • The nucleophilic substitution reactions of dipropyl chlorothiophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal ($k_H/k_D$ = 1.11-1.35). A concerted mechanism involving predominant frontside nucleophilic attack is proposed on the basis of the primary normal DKIEs and selectivity parameters. Hydrogen bonded, four-center-type transition state is proposed. The steric effects of the two ligands on the anilinolysis rates of various substrates are discussed.