• Title/Summary/Keyword: Isotonic

Search Result 183, Processing Time 0.024 seconds

Studies on the Simplified Hemagglutination Reaction to Pasteurella multocida and the Stabilization of Erythrocytes (Pasteurella multocida에 대(對)한 간이적혈구(簡易赤血球) 응집반응(凝集反應)과 적혈구(赤血球)의 안정화(安定化)에 관(關)한 연구(硏究))

  • Lee, Hak Cheul;Chung, Yung Gun;Kim, Kyo-Joon
    • Korean Journal of Veterinary Research
    • /
    • v.10 no.1
    • /
    • pp.11-23
    • /
    • 1970
  • Recently Carter(1952) reported the capsule antigens of Pasteurella multocida could be divided into four serological types A,B,C and D by means of precipitation tests. Subsequently he showed that the most sensitive for identification of these types involved the use of capsule substance adsorbed by erythrocytes in hemagglutination test. It may be somewhat difficult to conduct the hemagglutination test in small laboratory, because relatively large amounts of antisera and erythrocytes of the human O type are required for the test. A simple method for serological typing of P. multocida was the slide agglutination test employed by Little et al. (1943) and Namioka et al. (1962), but this method is still in controversy. The author tried adapting Carter's hemagglutination method to the slide method so called "micromethod technique", and studied on the stabilization of erythrocytes for use of slide hemagglutination to P. multocida although many invesigators reported the stabilization of erythrocytes. The results obtained are summarized as follows: 1. A simplified method (slide method) for capsule typing of the organism was developed by adapting Carter's hemagglutination reaction(tube method). Antibody-containing serum can be diluted serially on Boerner's microtest slide with capillary or serological pipetts with a considerable accuracy. The slide reaction can be carried out with case on the slide by adding $0.05m{\ell}$ of antigen-sensitized erythrocytes suspension diluted to one percent on $0.05m{\ell}$ of serially diluted antibody-containing sera, and the final result can be read after 60 minutes at the room temperature ($15^{\circ}C$). 2. It is difficult to determine superiority of inferiority between the slide method and the tube method on the pattern of the reaction of hemagglutination. 3. The pH range of 6.6 to 8.3 is optimal for the slide hemagglutination reaction. 4. The antigen-sensitization against erythrocytes at $37^{\circ}C$ is optimal for the slide hemagglutination. 5. Both the doses and concentration of antigen do not influence the antigen-adsorbing capacity of erythrocytes. 6. The reduction of antigen-sensitizing hours does not influence the antigen-adsorbing capacity of erythrocytes even 30 minutes. 7. The tannic acid treatment against formalinized and non-formalinized erythrocytes showed no effect on the reaction of hemagglutination. 8. The erythrocytes preserved at $4^{\circ}C$ in the ACD solution do not decrease the reactivity on the reaction of hemagglutination for 60 days, while they begin slight hemolysis 30 days after preserving. 9. The stable preparation of erythrocytes can be obtained by treating the cells at $37^{\circ}C$ for 20 hours with from 4 to 8 percent of formalin in saline or buffer. These cells can be preserved at $4^{\circ}C$ for more than 8 months experimented without hemolysis. With low concentration of formalin, the cells were not sufficiently stabilized resulting in the hemolysis after short period of preservation at $4^{\circ}C$. 10. The erythrocytes treated with 16 percent of formalin remain constantly or increase the reactivity for the reaction of hemagglutination. On the contrary, the cells treated with I to 8 percent of formalin decrease the reactivity. 11. There is no difference between nontreated fresh erythrocytes and the erythrocytes preserved in the ACD solution on the reactivity against the hemagglutination, and the erythrocytes treated with 16 percent of formalin showed the reactivity of higher level than that of the above two kinds of erythrocytes. 12. There is no difference between the saline and the isotonic buffer solution on the reaction of hemagglutination.

  • PDF

Effect of Acute Ethanol Intoxication on the Pulmonary Compliance and Surfactant in Rats (급성(急性) Ethyl 알콜 중독(中毒) 흰쥐의 폐용압률(肺容壓率)과 폐포활성물질(肺胞活性物質)의 변화(變化))

  • Lee, Seung-Jung;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 1981
  • Relatively little has been done on the metabolic changes of the lung produced by the excessive alcohol ingestion to the point of the acute alcohol intoxication. In the present study, an effort was made to clarify the possible changes of the pulmonary surfactant system by the acute alcohol ingestion. The dynamic pulmonary compliance and the levels of protein and inorganic phosphorus (Pi) of both lung lavage and extract were chosen as the parameters of the pulmonary surfactant activities. The albino rats of both sexes were used, and 1.5 ml of 50% ethanol per 100 g body weight was given by oral intubation, and the experiment was performed at 1, 3, 6, 12, and 24 hours after the alcohol ingestion. The rat was sacrificed by cutting the carotid arteries, and blood sample for the determination of hematocrit(Hct) and the blood alcohol concentration was obtained. Both lungs were completely removed without dammage to the lung tissue, and the pulmonary compliance was measured by the changes of pressure-volume(P-V) curves by inflating or deflating the lung with air. Immediately after the P-V curves were recorded, the lung lavage was obtained by washing the lobes with 15ml of isotonic saline 3 times with a syringe. Next, total lungs were homogenized and filtered to obtain the lung extract. The protein and Pi levels were measured using the lung lavage and extract as the samples, and the lung/body weight ratio(L/B ratio) was also calculated. The results thus obtained were compared with the normal values and summarized as follows. The blood alcohol concentration reached the highest level of $0.71{\pm}0.02\;g\;%$ at 1 hr and gradually decreased until 24 hrs$(0.36{\pm}0.02\;g%)$ after the alcohol ingestion, but all the experimental groups showed significant increase comparing with the normal. The highest Hct value was obtained at 1hr$(64.86{\pm}2.45%)$ and significantly elevated value was continued throughout the experiment. The L/B ratio was significantly lowered from 3hrs until 24hrs after the alcohol ingestion but from 6 th hr on, a generally elevated value was observed with a significant value at 12 hrs and gradual recovery to the normal value at 24 hrs after the alcohol ingestion. The pulmonary compliance at inflation and deflation did not change appreciablly from the normal until 3 hrs after the alcohol ingestion but from 6 th hr on, a generally elevated value was observed with a significant value at 12 hrs and gradual recovery to the normal value at 24 hrs after the alcohol ingestion. The protein level of the lung lavage stowed a significantly increased value of $12.36{\pm}0.35\;mg/gm(3rd hr)$, $12.70{\pm}0.74\;mg/gm(12 th hr)$, and $12.65{\pm}0.88\;mg/gm(24 th hr)$, respectively, comparing with the normal value of $10.65{\pm}0.62\;mg/gm$, and the Pi level also showed a similar tendency of significant increase at 12th hr $(7.65{\pm}0.63\;{\mu}mol/gm)$ and 24 th hr$(6.70{\pm}0.36\;{\mu}mol/gm)$ comparing with the normal value of $5.32{\pm}0.20\;{\mu}mol/gm$. The protein level of the lung extract in the alcohol group was generally similar to the normal value with a slight decrease at 1st and 3 rd hr, tut the Pi level of the lung extract was generally increased in the alcohol group, and a significant increase was observed at 6 th hr$(17.77{\pm}1.54\;{\mu}mol/gm)$, 12 th hr$(13.92{\pm}0.78\;{\mu}mol/gm)$ and 24 th hr$(14.57{\pm}0.53\;{\mu}mol/gm)$ of the alcohol ingestion comparing with the normal value of $10.34{\pm}0.37\;{\mu}mol/gm$. From the above, it may be concluded that the acute alcohol intoxication produces the metabolic changes of the lungs by the increased surfactant activities and elevated pulmonary compliance.

  • PDF

Studies on the morphological variation of plant organs of elongating node-part in rice plant (수도 신장 절위 경엽의 형태변이에 관한 연구)

  • 김만수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.1-35
    • /
    • 1969
  • Attempts were made to obtain the fundamental knowledge on the quantitative constitution status of leaves and stem of elongating node-part, and the relationships between these morphological characteristics along with the nitrogen contents of leaves and grain yield were examined varing application amounts of nitrogen in rice plant. I. The agronomic characteristics of leaves and nodes of elongation node-part (4-node parts from the top of stem) were observed at heading stage with 20 leading rice varieties of Kang Won district. The results are summarized as follows: 1. Leaf area magnitude of the flag and the fourth leaf was smaller than that of the second and the third with the average value of flag leaf 18.61 $cm^2$, the second leaf 21.84 $cm^2$, the third 21.52 $cm^2$ and the fourth 18.56 $cm^2$. The weight of leaf blade showed an isotonic tendency with the magnitude of leaf area with the value of the flag leaf 97.0 mg, the second leaf 117.1 mg, the third 115.4 mg, and the fourth 95.3 mg. The weight of each leaf sheath was remarkably larger at the higher node-part than at the lower node-part of the stem with the value of flag leaf sheath 176.3 mg, the second 163.7 mg, the third 163.4 mg and the fourth 123.9 mg. Accordingly, the total leaf weight of each part was larger at the second and the third leaf than at the first and the fourth. Total plant weight of each part (weight of leaf blade, leaf sheath, and culm) also was larger at the middle node-part. 2. Coefficients of variation for the varietal differences of the morphological characteristics of elongating node-part were 12.75% for the leaf area, 15.29% for the weight of leaf blade, 15.90%, for the weight of leaf sheath, 11.42% for the weight of internode, 15.45% for the leaf weight (leaf blade & leaf sheath) and 13.24% for the straw weight. And these coefficient values of the most characteristics were, on the whole, smaller at the second and the third node-part than at the first and the fourth node-part, but the coefficient value of the internode weight was rather small at the third and fourth node-part. 3. Constitutional ratio of each plant organ to the total plant weight in term of dry matter weight (excluding head and root wight) was 39.2% for the leaf sheath, 34.2% for the culm, 26.6% for the leaf blade. And ocnstitutional ratio of leaf sheath in term of dry matter weight was larger at the higher position in contrast with that of culm. 4. Average weight ration of leaf blade to culm, leaf sheath to culm, leaf blades to sheath and the leaf blades to culm plus leaf sheath were 77.7 %, 114.5%, 67.9% and 36.2%, respectively. With regard to the position of the plant organ, the weight ratio of leaf blade to culm and that of leaf sheath to culm were larger at higher part in contrast with that of leaf blade to leaf sheath. 5. Generally, there founded deep relationships between grain yield and each morphological characteristics of plant organ of elongating node-part as follows; Correlation coefficient between total area of 4 leaves (from flag to the fourth leaf) and grain yield was ${\gamma}$=0.666$^{**}$ In regard to the position of leaves, correlation coefficient values of flag, the second, the third and the fourth leaf were ${\gamma}$=0.659$^{**}$, ${\gamma}$=0.609$^{**}$, ${\gamma}$=0.464$^{*}$ and ${\gamma}$=0.523$^{*}$, respectively. Correlation coefficient between total weight of leaf blades and the grain yield was ${\gamma}$=0.678$^{**}$. In regard to the position of leaves, that of flag leaf was ${\gamma}$=0.691$^{**}$, and ${\gamma}$=0.654$^{**}$ for the second leaf, ${\gamma}$=0.570$^{**}$ for the third, and ${\gamma}$=0.544$^{**}$ for the fourth. Correlation between the weight of leaves (blade weight plus sheath weight) and the grain yield showed similar values. In the relationship between plant weight and grain yield there also was significant correlation, but with highly significant value only for the first node-part. There appeared correlation between total weight of leaf sheath and grain yield with the value of ${\gamma}$=0.572$^{**}$ and in regard to the position of each leaf sheath the values were ${\gamma}$=0.623$^{**}$ for the flag leaf, ${\gamma}$=0.486$^{**}$ for the second leaf, ${\gamma}$=0.513$^{**}$ for the third, ${\gamma}$=0.450$^{**}$ for the fourth. However, there was no significant correlation between culm weight and grain yield. 6. With respect to in gain yield, varietal differences in magnitude of leaf area, weight of leaf blade, leaf weight per unit area, weight of leaf sheath, culm weight, total leaf and stem weight were larger in the case of high yielding varieties and decreased in accordance with decreasing yield. And this tendency also was shown in the varietal differences of magnitude of each part. Variation in magnitude of each part for the leaf area, weight of leaf blade, culm weight was significantly small in high yielding varieties compared to low yielding varieties. 7. Plant constitutional ratio of each organ of the elongating node-part in term of weight magnitnde varied to som extent according to varieties indicating leaf blade 27.6%, leaf sheath 39.5%, culm 32.9% in the case of high yielding varieties, leaf blade 25.5%, leaf sheath 38.1%, culm 36.4% in the case of low yielding varieties, and medium yielding varieties showed intermadiate values. 8. Far higher values of the weight ration of leaf blade to culm and leaf sheath to culm were given to the high yielding varieties compared to low yielding varieties. And medium yielding varieties showed intermadiate values. II. Effects of application rate of nitrogen on the morphological characteristics of the elongating node-part, nitrogen content of leaf blade, and their relation with the grain yield of the rice were observed with 3 rice varieties; Shin No.2, Shirogane, and Jinheung varying application amounts of nitrogen as 8kg, 12kg and 16kg per 10 are. 1. As for the variation of morphological magnitude s affected by the amounts of nitrogen application, total leaf area (4 leaves from the flag leaf) increased to 16.5% at 12kg N plot, and about 30% at 16kg N polt compared to 8kg N plot and total weight of leaf blade also increased to similar extent, respectively, in contrast with weight of leaf sheath increasing 4.9% and 7.8%, respectively. However, the weight of culm decreased to 1.5% and 11.2%at the 12kg N plot and 16kg N plot, respectively, and these decreasing rate was noted at the nodes of lower part. 2. As for the verietal differences in variation of morphological magnitude as affected by the amount of nitrogen fertilization, leaf area coefficient value of variation of the total leaf area was 15.40% for Shin No. 2, 12.87% for Shirogane, and 10.99% for Jinheung. With respect to the position of nodes, the largest variation of leaf blade magnitude was observed at the fourth for Shin No. 2, the second for Shirogan, and flag leaf for Jinheung. And there also was an isotonic varietal difference in the weight of leaf blade. Variation in total culm weight showed varietal differences with the coefficient value of 7.72% for Shin No.2, 12.11% for Shirogane, and 0.94% for Jinheung. There also was varietal differences in the variation according to the position of nodes. 3. Variation of each elongating node-part related to the fertilization amount decreased with the increase of fertilization amount in the items of leaf area, weight of leaf sheath, culm weight, but weight of leaf sheath varied more at heavier fertilization than at others. 4. Constitutional ratio of each organ excluding head also varied with fertilization amount; constitutional ratio of leaf blade increased much with the increasing amount of fertilization in contrast with the response of culm eight. However, constitutional ration of the weight of leaf sheath was not much affected. 5. Lower value of the ration of leaf blade to culm was given to the 8kg N per 10 are plot, and the ratio of leaf blade to leaf sheath decreased with the increasing amount of fertilization in contrast with the increase in the ratio of leaf sheath to culm. however, the ration of leaf blade to culm plus leaf sheath decreased. 6. With the increase of nitrogen fertilization, leaf area, weight of leaf blade and leaf sheath increased. Accordingly, grin yield also increased to some extent. It was noted that culm weight was changed inversely to the changes in grain yield, but the degree of this variation varied with varietal characteristics. 7. Nitrogen content of leaves at heading and fruiting stage varied with the fertilization amount, and average nitrogen content of leaves of the varieties used 2.19%, 2.49% and 2.74% at the plot of 8kg N, and 12kg N and 16kg N per 10 are, respectively, at heading time, and 0.80%, 0.92% and 1.03% at each plot at fruiting stage. Thus, nitrogen content of leaves increased much with the increasing amount of fertilization, and higher value was given to the leaves on the higher position of elongating node-part. 8. There also was variation of nitrogen content of leaves in accordance with the varieties. However higher grain yield was obtained from the plants retaining higher nitrogen content in leaves at heading or fruiting stage.

  • PDF