• Title/Summary/Keyword: Isothermal thermogravimetry

Search Result 8, Processing Time 0.028 seconds

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Dehydriding Kinetics of the Mg2NiHx by Isothermal Thermogravimetry Analysis (등온 열중량 분석에 의한 Mg2NiHx 탈수소화 반응속도 연구)

  • Hong, Tae Whan;Kim, Young Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • In order to investigate the dehydriding properties of the $Mg_2NiH_x$ formed by hydrogen induced mechanical alloying, we performed isothermal thermogravimetry analysis at 453, 463, 473, 483, 493, 503 and 513K for 1 hours. Dehydrogenation kinetics were dependant strongly on the MA conditions which determine the In other words, kinds of synthesized hydrides phases and the crystal microstructures. The MA condition, 66:1 BCR(balls to chips mass ratio), especially 96h milling time, revealed the hydride phases of nano-/ amorphous state and the dehydriding activation energy of $43.4{\pm}3.6kJ/mole$.

  • PDF

Kinetics on the Thermal Decomposition of Cellulose (셀룰로오스의 열분해 반응속도론)

  • 최승찬;박영수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.55-62
    • /
    • 1983
  • Four of non- isothermal methods evaluating kinetics have been studied by using differential scanning calorimetry (DSC) and thermogravimetry (TG) and applied for kinetics of the thermal decomposition of cellulose. It is concluded that the heating evolution methods with DSC and approximative methods with TC can lead to satisfactory kinetic analysis. Results calculating the reacting order and the activation energy of cellulose decomposition were 1/2 order and 42kcaB/mol, respectively.

  • PDF

Thermal Degradation and Cyclodepolymerization of Poly(ethylene terephthalate-co-isophthalate)s

  • Yoo, Dong Il;Shin, Younsook;Youk, Ji Ho
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2001
  • The thermal degradation of poly(ethylene terephthalate-co-isophthalate)s (PETIs) is investigated by using isothermal thermogravimetric analysis at the temperature range of 280-31$0^{\circ}C$. The degradation rate of PETIs is increased as the mole ratio of ethylene isophthaloyl (EI) units in PETIs increases. The activation energies for the thermal degradation of poly(ethylene terephthalate), PETI(5/5), and poly(ethylene isophthalate) are 33.4, 16.6, and 8.9 kcal/mole, respectively. The degradation rate of PETIs is influenced by their volatile cyclic oligomer components formed during the polymerization and the thermal degradation. It is simulated by the rotational isomeric state model that the content of cyclic dimer in PETIs, which is the most volatile cyclic oligomer component, increases with the EI units in PETIs.

  • PDF

Evaluation of Kinetic Parameters and Thermal Stability of Melt-Quenched BixSe100-x Alloys (x≤7.5 at%) by Non-Isothermal Thermogravimetric Analysis

  • Ahmad, Mais Jamil A.;Abdul-Gader Jafar, Mousa M.;Saleh, Mahmoud H.;Shehadeh, Khawla M.;Telfah, Ahmad;Ziq, Khalil A.;Hergenroder, Roland
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.110-120
    • /
    • 2017
  • Non-isothermal thermogravimetry (TG) measurements on melt-quenched $Bi_xSe_{100-x}$ specimens (x=0, 2.5, 7.5 at%) were made at a heating rate ${\beta}=10^{\circ}C/min$ in the range $T=35^{\circ}C{\sim}950^{\circ}C$. The as-measured TG curves confirm that $Bi_xSe_{100-x}$ samples were thermally stable with minor loss at $T{\leq}400^{\circ}C$ and mass loss starts to decrease up to $600^{\circ}C$, beyond which trivial mass loss was observed. These TG curves were used to estimate molar (Se/Bi)-ratios of $Bi_xSe_{100-x}$ samples, which were not in accordance with initial composition. Shaping features of conversion curves ${\alpha}(T)-T$ of $Bi_xSe_{100-x}$ samples combined with a reliable flow chart were used to reduce kinetic mechanisms that would have caused their thermal mass loss to few nth-order reaction models of the form $f[{\alpha}(T)]{\propto}[1-{\alpha}(T)]^n$ (n=1/2, 2/3, and 1). The constructed ${\alpha}(T)-T$ and $(d{\alpha}(T)/dT)-T$ curves were analyzed using Coats-Redfern (CR) and Achar-Brindley-Sharp (ABS) kinetic formulas on basis of these model functions, but the linearity of attained plots were good in a limited ${\alpha}(T)-region$. The applicability of CR and ABS methods, with model function of kinetic reaction mechanism R0 (n=0), was notable as they gave best linear fits over much broader ${\alpha}(T)-range$.

Study on the Thermal Degradation of Poly(n-bulyl methacrylate) (Poly(n-butyl methacrylate)의 열분해에 관한 연구)

  • Kwak, Ki-Chul;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.3
    • /
    • pp.213-222
    • /
    • 1988
  • The thermal decomposition of poly(n-butyl methacrylate)(Pn-BMA) was studied using a dynamic and isothermal thermogravimetry in nitrogen gas with 50ml/min at several heating rates from 1 to $20^{\circ}C/min$, and at several heating temperature from 320 to $370^{\circ}C$. The mathematical techniques used for calculation of activation energy were Kissinger, Anderson, Chatterjee-Conrad, Friedman, Fuoss, Ozawa and isolthermal method. The range of activation energies obtained using the several techniques was between 43 and 51Kcal/mol except Chatterjee-Conrad and this range agreed with each other very well. The thermal degradation of Pn-BMA was considered to be carried out by main chain scission.

  • PDF

Effects of Metal Oxide Addition on Co-pyrolysis of PVC and ABS Mixtures (PVC와 ABS 혼합물의 공열분해에 대한 금속산화물의 첨가 효과)

  • Kim, Hee Taik;Choung, Youn Wook;Lee, Hae Pyeong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.296-303
    • /
    • 2005
  • The co-pyrolysis characteristics of polyvinylchloride (PVC) and acrylonitrile butadiene styrene (ABS) mixtures with various mixing ratios and effect of addition of CaO and $Cu_2O$ have been studied using thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS). In an isothermal decomposition conducted at $500^{\circ}C$, the yields of styrene monomers and aromatic compounds increased as the mixing ratio of ABS increased, and the yield of BTX compounds reached its maximum (16.14%) when the mixing ratios of PVC and ABS was 4:1. In an isothermal decomposition added with metal oxides, the maximum yield of liquid product was 73% when CaO [CaO/(PVC+ABS)=0.4] was added and it was 70% when $Cu_2O$ [$Cu_2O$/(PVC+ABS)=0.4] was added, respectively, where HCl contained in the gaseous product was completely removed when added with CaO [CaO/(PVC+ABS)=0.5] and $Cu_2O$ [$Cu_2O$/(PVC+ABS)=1.0]. Therefore, to obtain the highest yield of liquid product it appears to be the reaction condition: the reaction temperature of $500^{\circ}C$ and mixing ratios of CaO and $Cu_2O$ are 0.5 and 1.0, respectively.

A Sustainable and Viable Method to Recycle Oyster Shell Waste as an Alternative of Limestone in Limestone Calcined Clay Cement (LC3) (석회석 소성 점토 시멘트(LC3) 내 석회석 대체재로서 굴 패각의 친환경적인 재활용 방안)

  • Her, Sung-Wun;Suh, Heong-Won;Park, Jae-Yeon;Im, Su-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Over the last decades, great efforts have been devoted to reuse industrial wastes and by-products from various industries as supplementary cementitious materials in order to reduce carbon dioxide(CO2) emission by reducing the use of Portland cement in construction. Oyster shell waste, originating from the fishery industry, is available in huge quantities in certain areas, and is generally discarded or landfilled. In this study, we aimed to reuse oyster shell as an alternative to limestone in limestone calcined clay cement(LC3). The oyster shell calcined clay cement(OC3) paste were produced and were characterized via X-ray diffraction, isothermal calorimetry, compressive strength tests, and thermogravimetry. The results revealed that OC3 pastes exhibited similar strength development and reactivities by pozzolanic reaction with LC3, which implies that oyster shell could be used as a substitute for limestone in LC3.