• Title/Summary/Keyword: Isothermal characteristics

Search Result 258, Processing Time 0.031 seconds

Numerical Simulation on the Heat Transfer Characteristics of a Solar Thermal Receiver Depending on the End-Wall Angle Variation (고온 태양열 흡수기의 후벽 각도 변화에 따른 열전달 특성에 관한 수치적 모사)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kang, Yong-Hyeog
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2100-2105
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a high-temperature, high heat flux solar receiver as the end-wall angle varied. The concentration ratio of the solar receiver ranges from 200 to 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver incorporating high-temperature sodium heat pipe as well as a typical one that employs a molten-salt circulation loop with the same outer dimensions. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. FLUENT, a commercial software, was employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels and heat pipes. The numerical results were compared and analyzed from the view point of heat transfer characteristics the solar receiver system.

  • PDF

SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process (파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Kim, Jin-Ho;Kim, Hyo-Sik;Yoo, Young-Don;Kim, Jun-Woo;Koh, Dong-Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.420-424
    • /
    • 2019
  • In SNG (synthetic natural gas) process by proposed RIST(Research Institute of Industrial Science & Technology)-IAE(Institute for Advanced Engineering) (including three adiabatic reactors and one isothermal reactor), the methanation reaction and water gas shift (WGS) reaction take place simultaneously, and the supply of steam with syngas might control the temperature in catalyst bed and deactivate the catalyst. In this study for development of SNG process, the characteristics of the methanation reaction with a Ni-based catalyst by prepared RIST and using a low $H_2/CO$ mole ratio (including $CO_2$ 22%) are evaluated. The operating conditions ($H_2O/CO$ ratio of the $1^{st}$ adiabatic reactor, operating temperature range of $4^{th}$ isothermal reactor, etc.) were reflected the results from previous studies and in the same condition a pilot scale SNG process is carried out. As a results, the pilot scale SNG process is stable and the CO conversion and $CH_4$ selectivity are 100% and 96.9%, respectively, while the maximum $CH_4$ productivity is $660ml/g_{cat}{\cdot}h$.

Forced Convection Modelling of a Solar Central Receiver using Nonisothermal Cylinders in Crossflow (비등온 실린더 모델을 이용한 태양로의 강제 대류에 의한 열 손실 분석)

  • Chun, Won-Gee;Jeon, Myung-Seok;Jeon, Hong-Seok;Auh, P. Chung-Moo;Boehn, Robert F.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.13-18
    • /
    • 1990
  • When nonuniform thermal boundary conditions are imposed on the surface of a circular cylinder in crossflow, the heat transfer characteristics can be quite different compared to what is found for isothermal or constant heat flux boundary conditions. In the present analysis, two kinds of nonuniform boundary conditions along the circumference of the cylinder are considered in a uniform stream of air: step changes and linear profiles. Step changes in temperature can arise on the surface of an external, cylindrical, solar central receiver. As the working fluid(water) flows through the vertical tubes that ring the circumference of Solar One(a solar central receiver in Barstow, California), the solar flux on the receiver heats the water from a liquid to a superheated state. In this process, portions of the receiver panels, and thus portions of the circumference of the cylinder, function as a preheater, boiler, or superheater. Hence the surface temperature can vary significantly around the cylinder. Common engineering practice has been to use an average wall temperature with an isothermal cylinder heat transfer coefficient when estimating the convective loss in these kinds of situations.

  • PDF

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Pyrolysis Characteristics of Waste Ship Lubricating Oil using Waste Catalyst in Isothermal Tubular Type Pyrolysis Reactor (등온 열분해 반응기에서 폐촉매를 이용한 선박용 폐윤활유의 열분해반응 특성 연구)

  • Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.511-515
    • /
    • 2007
  • The yield of oil was rapidly increased at $440^{\circ}C$ compared to $400^{\circ}C$ and $420^{\circ}C$ when the isothermal pyrolysis of waste ship lubricating oil was carried out in tubular type reactor, and pyrolysis was almost finished within 30 min. The yield of gas was decreased depending on the reaction temperature in which that of solid was not much changed. Pyrolysis experiments of waste ship lubricating oil were carried out with used ZSM-5 produced from a petrochemical process. The yield of gas was highly increased in the case of used ZSM-5 and fresh ZSM-5 compared to the case without catalyst. The produced oil and gas were almost constant for fresh ZSM-5 and used ZSM-5 at the same reaction temperature. In the reaction temperature $400{\sim}440^{\circ}C$, the selectivity of $C_5-C_{11}$ was two times higher with fresh ZSM-5 and used ZSM-5 than the case without catalyst.

A Study on Phosphate Removal Efficiency by Pre-Treatment Conditioning of Oyster Shells (굴 패각의 전처리 조건에 따른 인산염 제거효율에 관한 연구)

  • Woo, Hee-Eun;Kim, Kyeongmin;Lee, In-Cheol;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2018
  • In this study, we investigated phosphate removal efficiency according to pretreatment (pyrolysis temperature, pyrolysis time, particle size) of oyster shells as a basic study for their recycling. And XAFS analysis and isothermal adsorption experiments were performed to investigate the phosphate removal characteristics of oyster shells. As a result, the removal efficiency was good at $600^{\circ}C$ pyrolysis temperature with 6 hour pyrolysis time and 0.355 ~ 0.075 mm particle size. Isothermal adsorption experiments showed that the Langmuir model is suitable for adsorption of oyster shells. XAFS analysis showed that calcium phosphate formed on the oyster shell pyrolyzed at $600^{\circ}C$. In other words, it was confirmed that the formation of calcium phosphate by the calcium ion elution of the oyster shell contributes to the decrease of phosphate concentration.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.

A Study on the Thermal Life-Time Expectation of a NR Rubber Material using Isothermal TGA and TMA (등온 TGA 및 TMA를 이용한 NR고무소재의 내열수명 예측에 관한 연구)

  • Ahn, Won-Sool;Park, Ki-Ho
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.269-273
    • /
    • 2009
  • A study on the life-time expectation of a CR-modified NR rubber composite through the change of thermal degradation characteristics was performed using both isothermal thermogravimetric analysis (TGA) and thermomechanical analysis (TMA). Master curves at reference temperature of $90^{\circ}C$ could be obtained with shift factor $a_T$, which was determined empirically using Time-Temperature Superposition Principle (TTSP). Activation energies could be calculated from the slope of Arrhenius plot of shift factor and showed similar values of $E_{a,TGA}$= 41.2 and $E_{a,TMA}$= 54.5 kJ/mol, respectively. It was considered from the results that chemical degradation resulting weight loss of the sample might be closely related to a physical degradation such as the dimensional change of the sample.

Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation (고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석)

  • Park, Young-Hark;Boo, Joon-Hong;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

An Experimental Study on the Swirling Flow Field in the Tangentially Fired Furnace (접선식 배치로내의 선회유동장에 관한 실험적 연구)

  • ;;;Yoon, S. H.;Sim, J. K.;Song, H. B.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3003-3013
    • /
    • 1995
  • The characteristics of the flow field in the tangentially fired furnace are presented. Experiments are conducted in the simplified cold type isothermal flow model. In the measurement of flow field, a hot wire anemometer is used. The hot wire was calibrated by lookup table method. The mean velocity field and turbulence characteristics are showed with changing the nozzle angle. In the center of the model, the low speed, unstable flow region is formed. The size and position of these regions are varied with changing the nozzle angle. It can be used as fundamental data in the design of the large furnace. From the experimental results, various turbulent characteristics of swirling flow field is obtained. And the entrainment mechanism of the jet flow field is described from the distribution of the skewness and the flatness. It can be used the raw data of approximate calculation and turbulent modelling.