• Title/Summary/Keyword: Isothermal adsorption experiment

Search Result 21, Processing Time 0.024 seconds

Phosphate Removal from Wastewater by Surface-Modified Pinus rigida Powder (표면개질된 Pinus rigida 분말에 의한 하수의 인산염 제거)

  • Jeong, Myoung-Sun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.241-248
    • /
    • 2011
  • This research was performed to evaluate the efficacy of phosphate removal from wastewater by surface-modified wood powder and to clarify the removal mechanisms. In this work, Pinus rigida which is abundant in Korea and has little economic value was used in preparation of the wood powder as a sorbent material. The experiments were carried out in 2 phases, isothermal adsorption test and column test. The results of adsorption test fitted well both the Langmuir and Freundlich isothermal equations. Adsorption capacity was highest with the bark powder followed by the mixed powder(50% bark powder and 50% woody powder) and woody powder. Phosphate removal efficiency was as high as 98% at initial phosphate concentration of 50mg/L. Specific surface area of the powder increased following the experiment and phosphate removal was speculated to occur through adsorption mechanism. Energy dispersive X-ray analysis(EDXA) revealed that the phosphate adsorbed onto the surface of the powder was in the form of strengite($FePO_{4}$).

Retrospect on Refractories in Water Treatment (기존 정수처리방법으로 제거가 어려운 유기물에 대한 실험적 연구)

  • 우달식;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 1995
  • As a basic experiment to develope biological pretreatment proces~ in water treatment, the experiments on biodegradability and isothermal adsorption of activated carbon were performed on refractories such as humic acid, $NH_3-N$, phenol and ABS which caused the problems in drinking water treatment. Also, the treatabilities on humic acid were examined in the continuous flow type reactors. The removal efficiencies of humic acid, $NH_3-N$, phenol and ABS in the biodegradable experiments for 5 days were 20.1%, 73.4%, 91.7% and 97.5%, respectively. In the isothermal adsorption test of refractories on activated carbon to be used as a media in the continuous flow type reactors, ABS and phenol are adsorbed easily, but humic acid and $NH_3-N$ are difficult to be done. The removal efficiencies of humic acid in granular activated carbon(GAC) reactor were about 7-8% higher than in biological activated carbon(BAC) reactor. The removal efficiencies of humic acid in biological fluidized bed(BFB) reactor were about 30% in GAC media, but were almost zero in sea sand media.

  • PDF

A Study on the Adsorption Characteristics of Benzene using Activated Carbon from Sewage Sludge (하수슬러지 활성탄의 벤젠 흡착특성)

  • Kim, Jong-Moon;Chung, Chan-Kyo;Lee, Taek-Ryong;Min, Byong-Hun;Kim, Hyung-Jin;Kwon, Young-Shik
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • In this study the experiments on the static adsorption of benzene were carried out using activated carbon made from sewage sludge. The experiment was performed at 303.15 K, 318.15 K and 333.15 K under the pressure up to 7.999kPa. Isothermal adsorption curves were obtained using Langmuir isotherm, Freundlich isotherm and Toth isotherm for comparison. Based on fitting the adsorption quantity of Benzene (q), the isothermal adsorption curves obtained from Langmuir isotherm and Toth isotherm showed the higher accuracy. Although there was little difference in accuracy between result from Langmuir isotherm and that from Toth isotherm, the adsorption quantity of Benzene (q) was expressed in terms of Langmuir isotherm because less parameters were required for Langmuir isotherm than for Toth isotherm. Moreover SEM images of the activated carbon from sewage sludge and the commercial activated carbon were taken to observe the pore size development. The results showed that the perforation development of the commercial activated carbon (DARCO A.C., SPG-100 A.C.) was better than that of activated carbon from sewage sludge. Adsorption quantity of benzene on commercial activated carbon was confirmed to be higher than that on activated carbon from sewage sludge. However the maximum adsorption quantity of benzene on activated carbon from sewage sludge was close to that on SGP-100 A.C. at 303.15K. Therefore, we may conclude that it is feasible to commercialize the process to manufacturing activated carbon from sewage sludge.

A Study on the Adsorption Characteristics of Benzene Using Activated Carbon from Waste Timber (폐벌목 활성탄의 벤젠 흡착특성)

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.430-436
    • /
    • 2013
  • In this study, experiments on the static adsorption of benzene were carried out using activated carbon made from Pinus koraiensis which is normally discarded waste timber in South Korea. The experiment were performed at 303.15 K, 318.15 K and 333.15 K under the pressure up to 7.999 kPa. Isothermal adsorption curves were obtained using Langmuir isotherm, Freundlich isotherm and Toth isotherm for comparison. Based on the fitting, the adsorption quantity of Benzene (q), the isothermal adsorption curves obtained from Langmuir isotherm and Toth isotherm showed the higher accuracy. Although there was little difference in accuracy between result from Langmuir isotherm and that from Toth isotherm, the adsorption quantity of Benzene (q) was expressed in terms of Langmuir isotherm because less parameters were required for Langmuir isotherm than for Toth isotherm. Moreover SEM images of the activated carbon from Pinus koraiensis and the commercial activated carbon were taken to observe the pore size development. The results showed that the perforation development of activated carbon from Pinus koraiensis (waste timber) was better than that of commercial activated carbon (DARCO A.C., SPG-100 A.C.). Adsorption quantity of benzene on activated carbon from Pinus koraiensis was confirmed to be higher than that on commercial activated carbon. Therefore, we may conclude that it is feasible to commercialize the process to manufacturing activated carbon from waste timber.

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.

Adsorption Characteristics of 2,4-Dichlrophenol by Magnetic Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 자성 활성탄을 이용한 2,4-디클로로페놀의 흡착특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.388-394
    • /
    • 2018
  • The removal of 2,4-dichlorophenol (2,4-dichlorophenol, 2,4-DCP) in aqueous solution was studied using the magnetic activated carbon (MAC) prepared from waste citrus peel. The adsorption characteristics of 2,4-DCP by MAC were investigated by varying the contact time, MAC dose, solution temperature, pH and 2,4-DCP concentration. The isothermal adsorption data were well explained by the Langmuir isotherm model equation and the maximum adsorption capacity calculated from the Langmuir isotherm equation was 312.5 mg/g. The adsorption kinetic data were well described by the pseudo-second-order reaction equation. The intraparticle diffusion model data indicated that both the film and intraparticle diffusion occur simultaneously during the adsorption process. The thermodynamic parameters of ${\Delta}H^o$ and ${\Delta}G^o$ have positive and negative values, respectively, indicating that the adsorption of 2,4-DCP by MAC is a spontaneous endothermic reaction. After the adsorption experiment was completed, the used MAC could be easily separated by an external magnet.

Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon (입상 활성탄에 의한 Murexide의 흡착 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • The equilibrium, kinetic and thermodynamic parameters of adsorption of murexide by granular activated carbon were investigated. The experiment was carried out by batch experiment with the variables of the amount of the adsorbent, the initial concentration of the dye, the contact time and the temperature. The isothermal adsorption equilibrium was best applied to the Freundlich equation in the range of 293 ~ 313 K. From the separation factor (${\beta}$) of Freundlich equation, it was found that adsorption of murexide by granular activated carbon could be the appropriate treatment method. The adsorption energy (E) obtained from the Dubinin- Radushkevich equation shows that the adsorption process is a physical adsorption process. From the kinetic analysis of the adsorption process, pseudo second order model is more consistent than pseudo first order model. It was found that the adsorption process proceeded to a spontaneous process and an endothermic process through Gibbs free energy change ($-0.1096{\sim}-10.5348kJ\;mol^{-1}$) and enthalpy change ($+151.29kJ\;mol^{-1}$). In addition, since the Gibbs free energy change decreased with increasing temperature, adsorption reaction of murexide by granular activated carbon increased spontaneously with increasing temperature. The entropy change ($147.62J\;mol^{-1}\;K^{-1}$) represented the increasing of randomness at the solid-solution interface during the adsorption reaction of murexide by activated carbon.

A Study on Isothermal Adsorption of VOCs onto Gypsum Mortar Incorporating Oyster Shell (굴패각 모르타르에의 휘발성 유기화합물 흡착에 대한 연구)

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • VOCs such as formaldehyde and benzene in a control chamber were adsorbed onto gypsum incorporating oyster shell powder, which was solidified and dried. VOC was first exposed in air and then gypsum mortar was placed in the chamber for 180 min for adsorption. The mortar was prepared with 0, 10, 30, and 50% of oyster shell powder. Two initial concentrations of VOCs including formaldehyde were $27.7{\sim}28.5mg/m^3$ or $175{\sim}150{\mu}g/m^3$. We found out that the initial concentrations did not seem to make any difference in adsorption performance but higher oyster content strongly led to higher adsorption. We used a convection-diffusion-adsorption model to compare the experiment. The model which considers diffusion coefficients of adsorbates and affinity of the adsorbents well represented the experimental data with a fair agreement.

Research on Adsorption Capacity of Acetaminophen for Constructed Wetland Design (인공습지 설계를 위한 여재 아세트아미노펜 흡착능 실험)

  • Jin Hong;Yuhyeon Kim;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.272-278
    • /
    • 2024
  • Due to industrialization, a trace amount of residues of pharmaceuticals and personal hygiene products (PPCPs) flows into the ecosystem, polluting the ecosystem. In particular, it was intended to remove trace pollutants flowing into the effluent due to the increase in the amount of acetaminophen detected after COVID 19. To conduct this experiment, selected 6 media which are suitable for construcgted wetland and isothermal adsorption experiments. Langmuir equation and the Freundlich equation were used to calculate the maximum removal rate of acetaminophen. Among them, the Freundlich equation showed a higher result value of 0.9823. It was applied when forming constructed wetlands in urban areas to model the reduction rate of acetaminophen in wetlands.