• Title/Summary/Keyword: Isothermal Process

Search Result 344, Processing Time 0.022 seconds

The Effect of Isothermal Annealing on Microstructure of Forged Parts (단조품의 등온 어닐링에 따른 미세조직 변화)

  • Kim, D.B.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

Effect of Patenting Temperature and Isothermal Time on the Phase Transformation and Microstructure Change in SAE 1078 Steel (SAE 1078 강의 파텐팅 온도 및 등온유지 시간에 따른 상변태 및 미세조직 변화)

  • Gi-hoon Kwon;Hyunjun Park;Kuk-hyun Yeo;Young-Kook Lee;Sang-gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.255-261
    • /
    • 2024
  • To study the effects of patenting temperature and isothermal holding time on the phase transformation and mechanical property changes of SAE 1078 steel, the patenting process was performed at 460℃, 560℃, and 660℃ for isothermal times (30 s, 60 s, 90 s, 120 s, and 150 s) after nitrogen cooling under austenitizing conditions (1000℃, 2 min). In this study, a scanning electron microscope was used to measure the microstructure and interlamellar spacing of pearlite according to process variables, and an X-ray diffraction analyzer was used to calculate the phase fraction. Cooling rate is approximately 18.6℃/s from the austenitizing temperature to the patenting temperature and pearlite transformation begins at 597~602℃. As the patenting temperature increases, the rate of carbon diffusion during isothermal step increases, so a relatively coarse pearlite structure is formed, and the hardness tends to decrease overall. As the isothermal holding time increased, the hardness of the treated specimens converged to 420Hv, 376Hv, and 268Hv, respectively, because the phase transformation was sufficiently completed at 460℃, 560℃, and 660℃. On the other hand, as the isothermal holding time became shorter, sufficient phase transformation did not occur after the isothermal process, so retained austenite existed, resulting in a decrease in hardness.

Process and die designs for isothermal forging of the small-scale Ti-6Al-4V wing shape (Ti-6Al-4V 소형 날개형상의 항온단조 공정 및 금형설계)

  • Yeom J.T.;Park N.K.;Lee Y.H.;Shin T.J.;Hong S.S.;Shim I.O.;Hwang S.M.;Lee C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.114-117
    • /
    • 2004
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The minimization of forging load and uniform strain distribution in a given forging condition were considered as main design factors. The FE simulation results fur the final process design were compared with the isothermal forging tests. Finally, the modified process design for producing the uniform Ti-6Al-4V wing product without forming defects was suggested.

  • PDF

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Effect of Mn and S Contents on Edge Cracking of Low Carbon Steels in Mini-Mill Process (미니밀공정 중 저탄소강의 에지크랙에 미치는 Mn 및 S의 영향)

  • 곽재현;정진환;조경목
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.66-71
    • /
    • 2000
  • The present study tackles the metallurgical subjects involving the thin slab-direct hot rolling process, i.e. mini-mill process. In order to clarify the effect of chemical composition of steel and MnS precipitation behaviors on the development of edge cracking during hot rolling, the content of manganese and sulfur in low carbon steel was varied and the isothermal treatment prior to roughing was applied. Edge cracking during roughing in the hot-rolling process of mini-mill was effectively prevented by means of the isothermal treatment at 115$0^{\circ}C$ for 5 minutes in the 0.4% manganese steel containing sulfur lower than 0.013%. With the increase in manganese content in low carbon steel, coarser MnS developed. The edge cracking index which denotes the total length of edge crack per unit edge-length of rolled specimens was proposed in this paper. It was found that the edge cracking index linearly decreased with the increase in the ratio of MnS.

  • PDF

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels (304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

An Analysis of Hot Closed-Die Forging to Reduce Forging Load (단조하중 감소를 위한 열간 형단조공정 해석)

  • 김헌영;김중재;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2970-2981
    • /
    • 1993
  • In hot closed-die forging the load increases rapidly near the final stage. Preforming operation is important to both the sound final forging and die-service life. In this study, the material flows during preforming and final forging are investigated. The physical modeling with Plasticine as a model material showed clear flow patterns. The forging process were numerically simulated by the finite element method with the isothermal and the non-isothermal models. The flow patten of the isothermal simulation showed good agreements with the experiments. Temperature changes and pressure distributions on the die surfaces during one cycle of the forging process were obtained from the non-isothermal simulation. High pressure and temperature were developed at certain areas of the die surfaces. It was concluded that those areas usually coincide with each other and should be distributed by the preforming operations to enhance the die life.

Microstructural Control of AA7075 Alloy for Thixoextrusion (반용융 압출을 위한 AA7075 합금의 조직제어)

  • Yoon, Young-Ok;Kim, Young-Jig;Kim, Shae-K.;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.249-253
    • /
    • 2005
  • The present study focuses on 7075 aluminum wrought alloy to investigate the potential industrial applications of thixoextrusion process. The microstructural evolution of 7075 aluminum wrought alloy for thixoextrusion has been investigated as a function of isothermal holding temperature and time in the partially remelted semisolid state. The results showed that the liquid fraction increased with increasing isothermal holding temperature and time while the average grain size was inversely proportional to isothermal holding temperature and time up to 5min. However, there was no big change of liquid fraction and average grain size with respect to isothermal holding temperature and time. The important fact that the liquid fraction and average grain size were almost uniform after 5 min holding time is considered very useful for thixoextrusion in terms of process control.

Isothermal Pass Schedule to Prevent Delamination in the Dry Wire Drawing Process (층간분리 방지를 위한 건식 등온 신선 패스 설계)

  • Ko, Dae-Cheol;Lee, Sang-Kon;Kim, Min-An;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.57-63
    • /
    • 2007
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In the multi-pass drawing process, temperature rise in each pass affects the mechanical properties of the final product such as bending, torsion, and tensile property, etc. This temperature rise during the deformation promotes the occurrence of delamination, and deteriorates the torsion property and durability of wire. This study investigates the occurrence of delamination in the wire through the torsion test and the evaluation of wire temperature. The excessive wire temperature leads to the occurrence of the delamination. Based on the calculation of the wire temperature, a new pass schedule, which can prevent the delamination due to the excessive wire temperature rise, is designed through the isothermal pass schedule.