• Title/Summary/Keyword: Isothermal Condition

Search Result 163, Processing Time 0.026 seconds

Study on the Correlation between Thermal Characteristics and Heat Accumulation in the Coal Pile (석탄의 열적 특성과 석탄 내부의 승온 특성과의 상관관계 연구)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 2010
  • Spontaneous ignition tests of five different coals with non-iso-thermal and iso-thermal test method based on the standard test procedure of NF T20-036 were carried. These five coals included the 2 low rank coals and 3 bituminous coals. Test results showed that the ignition temperatures of all coals at the iso-thermal conditions were higher than that of non-isothermal condition, and those of low rank SM and BR coal in both nonisothermal and isothermal conditions were lower than bituminous AN and CN coals. The chemical species of coals such as oxygen and hematite also plays an important role in enhancing the ignition rate that the ignition temperature of SM coal was lowered. The heat accumulation tendency of five coals inside outdoor stack pile was monitored with emphasis on the change in the temperature of the coal depth in stack pile. In case of low rank BR coal, its temperature inside coal stack pile due to the rate of high heat accumulation and oxidation was $59^{\circ}C$ compared to $51^{\circ}C$ for other SW bituminous coal. And the heat accumulation rate inside coal stack piles was increased with increased the Cp value which it was defined as the specific heat of coal at constant pressure, whereas other factors such as thermal diffusivity and conductivity of coal relatively had less effect on heat accumulation.

Sliding Wear Mechanism of the High-Nitrogen Austenitic 18Cr-l8Mn-2Mo-0.9N Steel (고질소 Fe-l8Cr-l8Mn-2Mo-0.9N 강의 미끄럼 마멸 기구)

  • Kim, S.D.;Kim, S.J.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.112-117
    • /
    • 2006
  • Sliding wear mechanism of a high nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel has been investigated. Dry sliding wear tests of the steel were carried out at various loads of IN-10N under a constant sliding speed condition of 0.15m/s against AISI 52100 bearing steel balls. Solution ($1050^{\circ}C$) and isothermal aging ($900^{\circ}C$) heat treatments were performed on the steel and the effect of the heat treatments on the wear was investigated. Wear rates of the solution-treated steel specimen remained low until 5N load, and then increased abruptly at loads above 5N. The rates of isothermally aged specimens were low and increased gradually with the applied load. Worn surfaces, their cross sections, and wear debris of the steel specimens were examined with a scanning electron microscopy. Phases of the heat-treated specimen and the wear debris were identified using XRD. The transformed phase underneath a sliding track was investigated and analyzed using a TEM. Effects of the phase transformation during the wear and $Cr_{2}N$ precipitates formed during the isothermal aging on the wear of the austenitic steel were discussed.

Sliding wear mechanism of the high-nitrogen austenitic 18Cr-18Mn02Mo-0.9N steel (고질소 Fe-18Cr-18Mn-2Mo-0.9N강의 미끄럼 마멸 기구)

  • Kim S. D.;Kim S. J.;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.105-108
    • /
    • 2005
  • Sliding wear mechanism of a high nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel has been investigated. Dry sliding wear tests of the steel were carried out at various loads of 1N-10N under a constant sliding speed condition of 0.15m/s against AISI 52100 bearing steel balls. Solution $(1050^{\circ}C)$ and isothermal aging $(900^{\circ}C)$ heat treatments were performed on the steel and the effect of the heat treatments on the wear were investigated. Wear rates of the solution-treated steel specimen remained low until 5N, and then increased abruptly at loads above 5N. The rates of isothermally aged specimens were low and increased gradually with the applied load. Worn surfaces, their cross sections, and wear debris of the steel specimens were examined with a scanning electron microscopy. Phases of the heat-treated specimen and the wear debris were identified using XRD. Phases transformed underneath the sliding track during the wear were investigated and analyzed using TEM. Effects of the phase transformation during the wear and $Cr_2N$ precipitates formed during the isothermal aging on the wear of the austenitic steel were discussed.

  • PDF

Aging Diagnosis of Underground Distribution Power Cables by Isothermal Relaxation Current Measurement Equipment (완화전류 측정에 의한 지중배전케이블의 열화진단)

  • Kim, Ju-Yong;Song, Il-Keun;Kim, Dong-Myung;Yun, Tae-Sang;Jeong, Sang-Bong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.502-505
    • /
    • 2004
  • The purpose of this experiment is to modify diagnosis criterion of isothermal relaxation current(IRC) measurement equipment which is using for distribution cable diagnosis. We're using this system for several years in the field instead of DC leakage current measurement and lots of cables were replaced. But we have to investigate on the reliability of this equipment for our cables because we didn't carried out condition assessment of extracted cables after field diagnosis by this equipment. It is important thing for cable maintenance. If the replacement criterion is improper we can not prevent failures or will waste budget on account of replacement of the sound cables. In this papar we selected field installed cables and injected silicone fluid to the cables for insulation rehabilitation. In order to prove reliability of the diagnosis equipment we compared diagnosis results and AC breakdown strength according to operating time after silicone treatment. This is the results of the field test for 1 year.

  • PDF

Aging Diagnosis and Characteristic Analysis of Distribution ,Power Cables I to Prepare Optimal Replacement Criterion (지중 배전케이블의 최적 교체기준 수립을 위한 열화진단 및 특성분석)

  • 김주용;송일근;정익중;한명관;심유종;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.258-263
    • /
    • 2004
  • The purpose of this experiment is to modify diagnosis criterion of isothermal relaxation current(IRC) measurement equipment which is using for distribution cable diagnosis. We're using this system for several years in the field instead of DC leakage current measurement and lots of cables were replaced. But we have to investigate on the reliability of this equipment for our cables because we didn't carried out condition assessment of extracted cables after field diagnosis by this equipment. It is important thing for cable maintenance. If the replacement criterion is improper we can not prevent failures or will waste budget on account of replacement of the sound cables. In this paper we selected field installed cables and injected silicone fluid to the cables for insulation rehabilitation. In order to prove reliability of the diagnosis equipment we compared diagnosis results and AC breakdown strength according to operating time after silicone treatment. This is the results of the field test for 1 year.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

A Two-Dimensional Analysis of Heat Transfer and Flow in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지의 2차원 열전달 및 유동 해석)

  • Jeong, Hye-Mi;Yang, Ji-Hye;Koo, Ja-Ye;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.995-1000
    • /
    • 2001
  • Distributions of the parameters in proton exchange membrane fuel cell (PEMFC) has been analyzed numerically under steady-state and isothermal conditions. The distributions of the crucial parameters (e.g., temperature and pressure) in a PEMFC have a major impact on its safe and efficient operation. This paper predicts the performance of the model electrode plates by calculating the pressure and temperature distributions of working fluid. The calculated results of pressure and temperature at exit condition shows good agreement to experiments and gives details of flow pattern inside of electrode plates.

  • PDF

Study on Flow Mixing Effects in a High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2000
  • Turbulence in journal bearing operation is examined and the thermal variability is studied for isothermal, convective and adiabatic conditions on the walls under aligned and misaligned conditions. Also, the effects of a contraction ratio at the cavitation region and the mixing between re-circulating oil and inlet oil on the fluid field of oil film are included. An algorithm for the solution of the coupled turbulent Reynolds and energy equations is used to examine the effects of the various factors. Heat convection is found to play only a small role in determining friction and load under no mixing condition. However, under realistic mixing condition, the heat convection cannot be ignored. The wall temperature and heat transfer have been found to be of secondary important factors to the mixing effectiveness at the groove and the final mixture temperature.

  • PDF

Temperature effect on multi-ionic species diffusion in saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Limkatanyu, Suchart;Xi, Yunping
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.149-171
    • /
    • 2014
  • This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF