• Title/Summary/Keyword: Isothermal Condition

Search Result 163, Processing Time 0.019 seconds

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Relation between the Heat Budget and the Cold Water in the Yellow Sea in Winter (동계의 열수지 황해냉수와의 관계)

  • Han, Young-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 1978
  • To study the fluctuation of cold water in the East China Sea in summer heat budget of the Yellow Sea in winter was analysed based on the oceanographic and meteorological data compiled from 1951 to 1974. The maintain value of insolation was observed in December($160{\sim}190ly/day$), while the maximum in February ($250{\sim}260ly/day$). The range of the annual variation was found to be less than 50 ly/day. The value of the radiation term ($Q_s-Q_r-Q_h$) was remarkably small (mean 20 ly/day) in winter. It was negative value in December and January, and a positive value in February. The minimum total heat exchange from the sea ($Q_({h+c}$) was found value (471 ly/day) in February 1962, and the maximum (882 ly/day) in January 1963. The annual total heat exchange was minimum (588 ly/day) in 1962, and maximum (716 ly/day) in 1968. If the average deviation of mean water temperature at 50m depth layer were assumed to be the horizontal index ($C_h$) of colder water, $C_h$ is $C_h=\frac{{\Sigma}\limit_i\;A_i\;T_i}{{\Sigma}\limit_i\;A_i}$ where $A_i$ denotes the area of isothermal region and $T_i$ the value of deviation from mean sea water temperature. The vertical index ($C_v$) of cold water can be expressed similarly. Consequently the total index (C) of cold water equals to the sum of the two components, i.e. $C=C_h$$C_v$. Taking the deviation of mean sea surface temperature(T'w) in the third ten-day of Novembers in the Yellow Sea as the value of the initial condition, the following expressions are deduced : $C-T'w=32.06 - 0.049$ $\;Q_T$ $C_h-T'w/2=12.20-0.019\;Q_T$ $C_v-T'w/2=18.07-0.027\;Q_T$ where $Q_T$ denotes the total heat exchange of the sea. The correlation coefficients of these regression equations were found to be greater than 0.9. Heat budget was 588 ly/day in winter, and minimum water temperature of cold water was $18^{\circ}C$ in summer of 1962. The isotherm of $23^{\circ}C$ extended narrowly to southward up to $29^{\circ}N$ in summer. However, heat budget was 716 ly/day, and minimum water temperature of cold water was $12^{\circ}C$ in summer of 1968. The isotherm of $23^{\circ}C$ extended widely to southward up to $28^{\circ}30'N$ in summer. As a result of the present study, it may be concluded that the fluctuation of cold water of the East China Sea in summer can be predicted by the calculation of heat budget of the Yellow Sea in winter.

  • PDF