• Title/Summary/Keyword: Isoparametric element

Search Result 214, Processing Time 0.019 seconds

Collision Analysis of STF Impregnated Kevlar Fabric Using the 3D-Shell Element (쉘요소를 활용한 STF 함침된 Kevlar Fabric의 방탄해석)

  • Lee, Duk-Gyu;Park, Jong-Kyu;Jung, Wui-Kyung;Lee, Man-Young;Kim, See-Jo;Moon, Sang-Ho;Son, Kwon-Joong;Cho, Hee-Keun
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.24-32
    • /
    • 2016
  • Ballistic impact analyses have been performed with the Kevlar fabric impregnated with STF(shear thickening fluid). Multi-layer laminates modeled with 3D isoparametric shell elements were used for the performance analysis and their results are compared with experimental results. Both experiments and numerical analyses have been done to verify the usefulness of STF to enhance the impact resistance performance. The results showed that STF increases friction within a bundle of fiber, and this phenomena is more apparent in the velocity range of under near 450 m/s. In this research, it is emphasized that FEA analyses of STF impregnated Kevlar fabric laminate were successfully conducted using shell elements. Moreover, the effectiveness of the technique and accuracy were verified through the comparison with reliable experimental data.

Development of FURA Code and Application for Load Follow Operation (FURA 코드 개발과 부하 추종 운전에 대한 적용)

  • Park, Young-Seob;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.88-104
    • /
    • 1988
  • The FUel Rod Analysis(FURA) code is developed using two-dimensional finite element methods for axisymmetric and plane stress analysis of fuel rod. It predicts the thermal and mechanical behavior of fuel rod during normal and load follow operations. To evaluate the exact temperature distribution and the inner gas pressure, the radial deformation of pellet and clad, the fission gas release are considered over the full-length of fuel rod. The thermal element equation is derived using Galerkin's techniques. The displacement element equation is derived using the principle of virtual works. The mechanical analysis can accommodate various components of strain: elastic, plastic, creep and thermal strain as well as strain due to swelling, relocation and densification. The 4-node quadratic isoparametric elements are adopted, and the geometric model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The pellet cracking and crack healing, pellet-cladding interaction are modelled. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behavior accurately and stably. The pellet and cladding model has been compared with both analytical solutions and experimental results. The observed and predicted results are in good agreement. The general behavior of fuel rod is calculated by axisymmetric system and the cladding behavior against radial crack is used by plane stress system. The sensitivity of strain aging of PWR fuel cladding tube due to load following is evaluated in terms of linear power, load cycle frequency and amplitude.

  • PDF

Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake

  • Zandi, Yousef;Shariati, Mahdi;Marto, Aminaton;Wei, Xing;Karaca, Zeki;Dao, Duy Kien;Toghroli, Ali;Hashemi, Mir Heydar;Sedghi, Yadollah;Wakil, Karzan;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.439-447
    • /
    • 2018
  • The structural behaviors of cylindrical barns as a specific engineering structure have been considered as a complicated computing process. The structure design against the earthquake load, to protect by using the code, is an urgency avoiding unexpected damages. The situation has been subjected to the applied design method if there would be no failure across the construction procedures. The purpose of the current study is to clarify the behaviors of cylindrical reinforced concrete barns through the analytic methods across the mass and Lagrangian approaches through the whole outcomes comparison indicating that the isoparametric element obtained from the Lagrangian approach has been successfully applied in the barns earthquake analysis when the slosh effects have been discarded. The form of stress distributions is equal with $s_z$ closed distributions to one another.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.