• Title/Summary/Keyword: Isoniazid-resistant

Search Result 57, Processing Time 0.021 seconds

Pyrosequencing Based Detection of Rifampicin or Isoniazid Resistant in Mycobacterium tuberculosis (Pyrosequencing 분석법을 이용한 Rifampicin과 Isoniazid 결핵약제내성의 빠른 검사법)

  • Oh, Seo-Young;Kim, Hyo-Bin;Shin, Min-Sik;Kim, Jin-Wook;Park, Sung-Hwuy
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.1
    • /
    • pp.24-30
    • /
    • 2009
  • Rifampicin (RIF) and isoniazid (INH) are the most important drug for the treatment of Mycobacterium tuberculosis. Mutations correlated to rifampicin and isoniazid-resistance have been detected in rpoB gene and katG gene, respectively. Of the rifampicin-resistant isolates, 90% showed mutations in rpoB gene at codon 507 to 533. Isoniazid-resistant isolates analysed had a mutation in katG at codon 315. The aim of this study is to develop a pyrosequencing-based approach for rapid detection of ripampin or isoniazid resistant M. tuberculosis based on characterization of all possible mutation in the target region. For this study, the DNA selected from 35 cases of MTB PCR positive clinical sample such as bronchial washing, sputum, and pleural fluid. RIF or INH resistant was analyzed by pyrosequencing data of rpoB and katG gene. 28 (80%) and 7 (20%) of 35 MTB PCR positive DNAs were occured rifampicin-sensitivity and resistant, respectively. For INH, 30 (85.7%) and 5 (14.5%) cases were detected isoniazid-sensitivity and resistant, respectively. When pyrosequencing analysis was compared with ABI sequencing analysis, both analysis were presented same result, but pyrosequencing analysis was more rapid than ABI sequencing analysis. In conclusion, we found that pyrosequencing technology offers high accuracy, specificity, short turn around time and a high throughput in detection of rifampicin or isoniazid resistance in M. tuberculosis.

  • PDF

Treatment of Isoniazid-Resistant Pulmonary Tuberculosis

  • Jhun, Byung Woo;Koh, Won-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.1
    • /
    • pp.20-30
    • /
    • 2020
  • Tuberculosis (TB) remains a threat to public health and is the leading cause of death globally. Isoniazid (INH) is an important first-line agent for the treatment of TB considering its early bactericidal activity. Resistance to INH is now the most common type of resistance. Resistance to INH reduces the probability of treatment success and increases the risk of acquiring resistance to other first-line drugs such as rifampicin (RIF), thereby increasing the risk of multidrug-resistant-TB. Studies in the 1970s and 1980s showed high success rates for INH-resistant TB cases receiving regimens comprised of first-line drugs. However, recent data have indicated that INH-resistant TB patients treated with only firs-tline drugs have poor outcomes. Fortunately, based on recent systematic meta-analyses, the World Health Organization published consolidated guidelines on drug-resistant TB in 2019. Their key recommendations are treatment with RIF-ethambutol (EMB)-pyrazinamide (PZA)-levofloxacin (LFX) for 6 months and no addition of injectable agents to the treatment regimen. The guidelines also emphasize the importance of excluding resistance to RIF before starting RIF-EMB-PZA-LFX regimen. Additionally, when the diagnosis of INH-resistant TB is confirmed long after starting the first-line TB treatment, the clinician must decide whether to start a 6-month course of RIF-EMB-PZA-LFX based on the patient's condition. However, these recommendations are based on observational studies, not randomized controlled trials, and are thus conditional and based on low certainty of the effect estimates. Therefore, further work is needed to optimize the treatment of INH-resistant TB.

Pediatric tuberculosis and drug resistance (소아 결핵과 약제 내성)

  • Kim, Yae-Jean
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.529-537
    • /
    • 2009
  • Drug-resistant tuberculosis in children has important implications for both the patients and tuberculosis control programs. In Korea, among all new patients, the isoniazid resistance rate was 9.9% and multidrug-resistant tuberculosis rate was 2.7% in 2004 (in patients aged 10-19 yr, the multidrug-resistant tuberculosis rate reached 2.1%). Tuberculosis in pediatric patients is difficult to diagnose because many children have nonspecific clinical signs and the detection rates of acid-fast bacilli smears and cultures are low. Therefore, every effort should be made to identify adult sources and obtain information on drug susceptibility because symptomatic adult patients have a higher chance of culture positivity and drug-susceptibility patterns are the same in most adult-child pair patients. Korean children are at significant risk of drug-resistant tuberculosis. As the isoniazid resistance rate is greater than 4% among the new cases in Korea, a four-drug regimen should be considered for initial treatment of children with active tuberculosis, unless drug-susceptibility test results are available. Treatment of drug-resistant tuberculosis in children is challenging and there are only few available data. Tuberculosis control programs should be continuous with specific focus on pediatric populations because they can serve as reservoirs for future active cases. Further studies are needed regarding treatment of drug-resistant tuberculosis in children.

Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance

  • Lee, Joo Hee;Jo, Kyung-Wook;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Background: The purpose of this study was to analyze the relationship between the gene mutation patterns by the GenoType MTBDRplus (MTBDRplus) assay and the phenotypic drug susceptibility test (pDST) results of isoniazid (INH) and prothionamide (Pto). Methods: A total of 206 patients whose MTBDRplus assay results revealed katG or inhA mutations were enrolled in the study. The pDST results were compared to mutation patterns on the MTBDRplus assay. Results: The katG and inhA mutations were identified in 68.0% and 35.0% of patients, respectively. Among the 134 isolated katG mutations, three (2.2%), 127 (94.8%) and 11 (8.2%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Among the 66 isolated inhA mutations, 34 (51.5%), 18 (27.3%) and 21 (31.8%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Of the 34 phenotypic Pto resistant isolates, 21 (61.8%), 11 (32.4%), and two (5.9%) had inhA, katG, and both gene mutations. Conclusion: It is noted that Pto may still be selected as one of the appropriate multidrug-resistant tuberculosis regimen, although inhA mutation is detected by the MTBDRplus assay until pDST confirms a Pto resistance. The reporting of detailed mutation patterns of the MTBDRplus assay may be important for clinical practice, rather than simply presenting resistance or susceptibility test results.

Microplate hybridization assay for detection of isoniazid resistance in Mycobacterium tuberculosis

  • Han, Hye-Eun;Lee, In-Soo;Hwang, Joo-Hwan;Bang, Hye-Eun;Kim, Yeun;Cho, Sang-Nae;Kim, Tae-Ue;Lee, Hye-Young
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Early and accurate detection of drug resistant Mycobacterium tuberculosis can improve both the treatment outcome and public health control of tuberculosis. A number of molecular-based techniques have been developed including ones using probe molecules that target drug resistance-related mutations. Although these techniques are highly specific and sensitive, mixed signals can be obtained when the drug resistant isolates are mixed with drug susceptible isolates. In order to overcome this problem, we developed a new drug susceptibility test (DST) for one of the most effective anti-tuberculosis drug, isoniazid. This technique employed a microplate hybridization assay that quantified signals from each probe molecule, and was evaluated using clinical isolates. The evaluation analysis clearly showed that the microplate hybridization assay was an accurate and rapid method that overcame the limitations of DST based on conventional molecular techniques.

Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Using the Quantamatrix Multiplexed Assay Platform System

  • Wang, Hye-young;Uh, Young;Kim, Seoyong;Cho, Eunjin;Lee, Jong Seok;Lee, Hyeyoung
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.569-577
    • /
    • 2018
  • Background: The increasing prevalence of drug-resistant tuberculosis (TB) infection represents a global public health emergency. We evaluated the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform [QMAP], QuantaMatrix, Seoul, Korea) to rapidly identify the Mycobacterium tuberculosis complex (MTBC) and detect rifampicin (RIF) and isoniazid (INH) resistance-associated mutations. Methods: A total of 200 clinical isolates from respiratory samples were used. Phenotypic anti-TB drug susceptibility testing (DST) results were compared with those of the QMAP system, reverse blot hybridization (REBA) MTB-MDR assay, and gene sequencing analysis. Results: Compared with the phenotypic DST results, the sensitivity and specificity of the QMAP system were 96.4% (106/110; 95% confidence interval [CI] 0.9072-0.9888) and 80.0% (72/90; 95% CI 0.7052-0.8705), respectively, for RIF resistance and 75.0% (108/144; 95% CI 0.6731-0.8139) and 96.4% (54/56; 95% CI 0.8718-0.9972), respectively, for INH resistance. The agreement rates between the QMAP system and REBA MTB-MDR assay for RIF and INH resistance detection were 97.6% (121/124; 95% CI 0.9282-0.9949) and 99.1% (109/110; 95% CI 0.9453-1.0000), respectively. Comparison between the QMAP system and gene sequencing analysis showed an overall agreement of 100% for RIF resistance (110/110; 95% CI 0.9711-1.0000) and INH resistance (124/124; 95% CI 0.9743-1.0000). Conclusions: The QMAP system may serve as a useful screening method for identifying and accurately discriminating MTBC from non-tuberculous mycobacteria, as well as determining RIF- and INH-resistant MTB strains.

Development of Oligonucleotide Chip for Detection of Drug-Resistant Mycobacterium Tuberculosis (약제내성 결핵균의 검출을 위한 Oligonucleotide Chip의 개발)

  • Song, Eunsil;Park, Heekyung;Jang, Hyunjung;Kim, Hyomyung;Chang, Chulhun L.;Kim, Cheolmin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.41-58
    • /
    • 2003
  • Background : The resurgence of tuberculosis and the widespread emergence of multidrug-resistant M. tuberculosis have emphasized the importance of rapid and accurate diagnostic procedures. Recently, the oligonucleotide chip has proven to be a useful tool in the rapid diagnosis of infectious diseases. The purpose of this study was to rapidly and accurately detect specific mutations in the rpoB, katG and rpsL genes associated with rifampin, isoniazid and streptomycin resistance in M. tuberculosis, respectively, using a single oligonucleotide chip. Method : For detection of drug-resistance, 7 wild-type and 13 mutant-type probes for rifampin, 2 wild-type and 3 mutant-type probes for isoniazid, and 2 wild-type and 2 mutant-type probes for streptomycin were designed and spotted onto glass slides. Fifty-five cultured samples of M. tuberculosis were amplified by PCR, and then underwent hybridization and scanning. Direct sequencing was done to verify the results from the oligonucleotide chip and to analyze the types of mutations. Result : Thirty-five cases out of 40 rifampin-resistant strains(~88%) had mutations in the rpoB gene. One case had a new mutation(D516F, GAC R TTC) and another known mutation together. Twenty cases out of 42 isoniazid-resistant strains(~50%) had mutations in the katG gene, while 7 cases out of 9 streptomycin-resistant strains(~78%) had mutations in the rpsL gene. From these results, the oligonucleotide chip was confirmed to be able to detect the most frequent mutations from the genes associated with rifampin, isoniazid and streptomycin resistance. The results proved that the drug-resistance detection probes were specific. When the results from the oligonucleotide chip and DNA sequencing were compared, the types of mutations were exactly matched. Conclusion : The diagnostic oligonucleotide chip with mutation specific probes for drug resistance is a very reliable and useful tool for the rapid and accurate diagnosis of drug resistance against rifampin, isoniazid and streptomycin in M. tuberculosis infections.

Epidemiological Characteristics of Patients with Drug-Resistant Tuberculosis (약제 내성 결핵 환자의 역학적 특징)

  • Lee, Jin-Hwa;Chang, Jung-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.4
    • /
    • pp.412-420
    • /
    • 2000
  • Background : There is increasing concern in many countries about the problem of drug-resistant tuberculosis. Prevalence of primary drug-resistant tuberculosis is the optimal epidemiological indicator for long term monitoring of national tuberculosis control program. Our purpose was The purpose of our study is to assess clinical characteristics and socioeconomic status of patients with drug-resistant tuberculosis. Method : We studied 68 cases with drug-resistant Mycobacterium tuberculosis infection diagnosed at the Ewha Womans University Mokdong Hospital from March, 1995 to February, 2000. Results : Patients with primary drug-resistant tuberculosis(PDR) were younger (39.6$\pm$16.3 years vs. 48.2$\pm$16.5 years ; p<0.05), had more population of less than more were under the age of 40 years aged -group(62.9% vs. 36.4% ; p<0.05) and were more highly educated than those with acquired drug-resistant tuberculosis(ADR)(38.9% vs. 11.1% ; p<0.05). In patients with ADR, the rates of familial history of tuberculosis and living in a rented house residence in a rented house were increased higher than compared with to those of patients with PDR. Patients with ADR had more involved lobes(2.0$\pm$0.8 vs. 1.4$\pm$0.7 ; p<0.01) and longer treatment duration than those with PDR(18.3$\pm$7.2 months vs. 10.6$\pm$6.3 months ; p<0.05). Patients with ADR showed larger numbers of resistant were resistant to more number of drugs, lower hospitalization rate and higher rate of self-interruption of medication than those with PDR. In patients with PDR, mono-drug resistance was increased, whereas poly- and multi-drug resistances were decreased compared with those with ADR. Resistance to isoniazid was the highest among antituberculosis drugs, and resistance to isoniazid in patients with ADR was higher than that in patients with PDR(90.9% vs. 71.4% ; p<0.05). Conclusions : Patients with ADR were more likely to include more population be of lower socioeconomic class, and patients with PDR seem seemed to be young and socially active population. For control of drug-resistant Mycobacterium tuberculosis infection, proper isolation and prevention of patient with drug-resistant tuberculosis are needed.

  • PDF

Molecular Analysis of Isoniazid-Resistance Related Genes of Mycobacterium tuberculosis Isolated from Korea

  • Hwang Joo Hwan;Jeong Eun Young;Choi Yeon Im;Bae Kiho;Song Taek Sun;Cho Sang-Nae;Lee Hyeyoung
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.455-463
    • /
    • 2005
  • Resistance to isoniazid (INH), which is one of the most important drugs in Mycobacterium tuberculosis chemotherapy, has been associated with mutations in genes encoding the mycobacterial catalse-peroxidase (katG), the enoyl acyl carrier protein (ACP) reductase (inhA), alkyl hydroperoxide reductase (ahpC), beta-ketoacyl acyl carrier protein synthase (kasA), and NADH dehydrogenase (ndh). In this study, we examined INH-resistance related genes in 50 INH-resistant and 24 INH-susceptible isolates by PCR-sequence analysis. In brief, mutations at the katG gene were found at codon 315 alone (2/50), at codon 463 alone (19/50), and both at 315 and 463 (29/50). However, while mutations at codon 315 were only detected in INH-resistant isolates, mutations at codon 463 were also detected in INH-susceptible isolates indicating mutations at 463 alone do not seem to confer resistance to INH. Similar to the case of katG 463, some of inhA mutations were also found among INH-susceptible isolates. For example, whereas mutations at 8 upstream of the start codon (UPS) and 15 UPS of the inhA gene were detected only in INH-resistant isolates, mutations at 101, 115, and 125 UPS were detected only in INH-susceptible isolates. Many different kinds of mutations were detected in INH­resistant isolates at ahpC, oxyR gene, and intergenic region of the oxyR-ahpC genes. Howerver, the mutations were not found oxyR and the intergenic regions in INH-susceptible isolates. No mutations were found at either kasA or at ndh gene among INH-resistant isolates. In conclusion, some of mutations such as katG 315, inhA promotor region, and oxyR-ahpC seem to be strongly related to INH-resistance. Currently we are developing a molecular diagnostic method based on these results.

  • PDF

A Rapid Assessing Method of Drug Susceptibility Using Flow Cytometry for Mycobacterium tuberculosis Isolates Resistant to Isoniazid, Rifampin, and Ethambutol

  • Lee, Sun-Kyoung;Baek, Seung-Hun;Hong, Min-Sun;Lee, Jong-Seok;Cho, Eun-Jin;Lee, Ji-Im;Cho, Sang-Nae;Eum, Seok-Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.264-272
    • /
    • 2022
  • Background: The current conventional drug susceptibility test (DST) for Mycobacterium tuberculosis (Mtb) takes several weeks of incubation to obtain results. As a rapid method, molecular DST requires only a few days to get the results but does not fully cover the phenotypic resistance. A new rapid method based on the ability of viable Mtb bacilli to hydrolyze fluorescein diacetate to free fluorescein with detection of fluorescent mycobacteria by flow cytometric analysis, was recently developed. Methods: To evaluate this cytometric method, we tested 39 clinical isolates which were susceptible or resistant to isoniazid (INH) or rifampin (RIF), or ethambutol (EMB) by phenotypic or molecular DST methods and compared the results. Results: The susceptibility was determined by measuring the viability rate of Mtb and all the isolates which were tested with INH, RIF, and EMB showed susceptibility results concordant with those by the phenotypic solid and liquid media methods. The isolates having no mutations in the molecular DST but resistance in the conventional phenotypic DST were also resistant in this cytometric method. These results suggest that the flow cytometric DST method is faster than conventional agar phenotypic DST and may complement the results of molecular DST. Conclusion: In conclusion, the cytometric method could provide quick and more accurate information that would help clinicians to choose more effective drugs.