• Title/Summary/Keyword: Isomorphous substitution

Search Result 4, Processing Time 0.021 seconds

Isomorphous Substitution of Fe in Sodalite and Its Electric Characterization

  • Kim, Chy-Hyung;Jung, Chi-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.215-220
    • /
    • 1993
  • Experiment on isomorphous substitution of Al by Fe in sodalite framework was carried out using dry way method at 800-900$^{\circ}$C in nitrogen atmosphere. The substitution of Fe was possible up to 25 mole% with some deviation of symmetry in sodalite cage. The cubic unit cell parameter increased with increasing Fe content. It showed ionic semiconducting property, especially the highest conductivity and the lowest activation energy in 10 mole% Fe-substituted sodalite which could behave as a superionic conductor at above 400$^{\circ}$C. When more Fe was introduced into sodalite the electronic conductivity was improved at high temperature. But the relative electronic contribution was found to be lower compared with ionic contribution at high temperature. In infrared spectra some major absorption bands of sodalite shifted to lower wave numbers due to heavier Fe atoms substitution in Al lattice sites.

Preparation of 1.1-nm Tobermorite from Starting Zeolite Mineral (Zeolite광물을 출발물질로 한 1.1-nm Tobermorite의 제조)

  • Yim, Going
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.274-283
    • /
    • 1999
  • 1.1-nm tobermorite의 수열합성에 SiO2원으로 zeolite광물을 출발물질로하여 소석회와 Ca(Si+Al)의 몰비 0.8~1.0로 150$^{\circ}$~23$0^{\circ}C$,8~48시간 동ㅇㄴ 포화증기압하에서 수열반응을 시킨 결과, 반응초기단계에서 tobermorite가 생성되었고, 고결정성 1.1-nm tobermorite의 최적합성조건은 0.8몰, 23$0^{\circ}C$, 48시간이었다. 출발물질중 Al의 존재로 tobermorite는 Ca/(Si+Al)몰비 0.8이 1.0보다 결정화가 급속히 이루어지고 있으나 Al를 함유치 않은 석영의 경우에는 Ca/Si 몰비 1.0이 0.8에서 보다 결정화가 빠르게 진행되었다 1.1-nm tobermorite는 $700^{\circ}C$에서 일주일간 가열처리하여도 저면간격이 변화하지 않는 열적거동이 이상형임을 보여주었다. 특히 출발물질중 Al의 존재는 1.1-nm tobermorite의 결정화와 안정화를 촉진시켜주며 Al이온이 tobermorite구조중의 Si이온과 동형치환을 한다.

  • PDF

Hydrothermal Alteration and Mineralogy of Alunite and Kaolinite in the Ogmae Deposit, Southwest Jeonnam (전남(全南) 옥매산광상(玉埋山鑛床)의 열수변질작용(熱水變質作用) 및 광석광물(鑛石鑛物)에 대한 광물학적(鑛物學的) 연구)

  • Kim, Young Hee;Moon, Hi-Soo;Kim, Jong Hwan;You, Jang Han;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.287-308
    • /
    • 1990
  • The Ogmae alunite-kaolinite deposit occurs in acidic tuff, the Hwangsan Tuff, of upper Crataceous age in the Haenam volcanic field, SW Jeonnam. This deposit characterized by advanced argillic alteration formed $71.8{\pm}2.8{\sim}73.9{\pm}2.8$ Ma ago in very shallow depth environment with acid-sulfate solution. Wallrock alteration can be classified into four zones from the center to the margin of the deposit: alunite, kaolinite, illite, and silicified zone. The mineral assemblage in the alunite zone, ore zone, is alunite-quartz-pyritekaolinite. Consideration of stability relation of these minerals suggests that the maximum alteration temperature is estimated at about $250^{\circ}C$ with solution pH of 3 or below assuming that pressure does not exceed 0.3 Kb. Alunite occurs as two different types; replacement and vein-type deposit. The former one consists of fine grained alunite and the later one coarse grained and relatively pure alunite that formed by open space filling. Isomorphous substitution of Na for K in these two types of alunites range 0 to 40 %, indicating that Na/K ratio in the solution is spontaneously changed during the alteration process. Alunite which has higher Na substitution probably formed in an earlier stage while the solution sustain high Na/K ratio. K-Ar age of alunites indicate that the replacement alunite formed earlier($73.9{\pm}2.8Ma$) than the vein-type alunite($71.8{\pm}2.8Ma$). The ${\delta}^{34}S$ value of pyrite and alunite indicate that those minerals formed at isotopically nonequillibrium state. The ${\delta}^{16}O$ and ${\delta}D$ values, of kaolintics 5.0 to 9.0‰ and -54 to -99‰, respectively, indicate that those are formed by hydrothermal solution having magmatic origin which have been diluted by low ${\delta}D$ meteoric water.

  • PDF

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.