• Title/Summary/Keyword: Isometric Contraction

Search Result 401, Processing Time 0.026 seconds

A MODEL FOR MYOELECTRIC SIGNAL WITH LOCALIZED MUSCLE FATIGUING

  • Lee, Y.S.;Jeon, C.J.;Lee, S.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.79-86
    • /
    • 2003
  • A myoelectric signal, under sustained isometric contraction of muscle the modelled as the output of a linear time-varying system whose input is constant number of pulse train. The proposed model considered localized muscle fatigue by metabolic by-products during sustained fatiguing contraction. To characterize muscle fatiguing model of myoelectric signal, We calculated median frequency of generated signal as fatiguing index of muscle during sustained isometric contraction.

  • PDF

Force Depression Following Active Muscle Shortening during Voluntary Contraction in Human Tibialis Anterior Muscle (인체 전경골근의 수의적 수축시 선행 동심성 근수축이 항정상태 등척성 근력에 미치는 영향)

  • Lee, Hae-Dong;Lee, Seung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.75-83
    • /
    • 2006
  • The purpose of this study was to investigate steady-state force depression following active muscle shortening in human tibialis anterior muscle during voluntary contractions. Subjects (n = 7; age $24{\sim}39$ years; 7 males) performed isometric reference contractions and isometric-shortening-isometric contractions, using maximal voluntary effort. Force depression was assessed by comparing the steady-state isometric torque produced following active muscle shortening with the purely isometric reference torque obtained at the corresponding joint angle. In order to test for effects of the shortening conditions on the steady-state force depression, the speed of shortening were changed systematically in a random order but balanced design. Ankle dorsiflexion torque and joint angle were continuously measured using a dynamometer. During voluntary contractions, muscle activation of the tibialis anterior and the medical gastrocnemius was recorded using surface electromyography. Force depression during voluntary contractions, with a constant level of muscle activation, was 12 %, on average over all subjects. Force depression was independent of the speeds of shortening ($13.8{\pm}2.9%$, $10.3{\pm}2.6%$ for 15 and 45 deg/sec over 15 deg of shortening, respectively). The results of this study suggest that steady-state force depression is a basic property of voluntarily-contracting human skeletal muscle and has functional implication to human movements.

The Effects of Microcurrent Electrical Neuromuscular Stimulation on Delayed Onset Muscle Soreness, Serum Creatine Kinase, and Maximal Voluntary Isometric Contraction: A Preliminary Report (미세전류신경근자극이 Delayed Onset Muscle Soreness, 혈청 Creatine Kinase, 최대 수의적 등척성 수축에 미치는 영향)

  • Kim, Tae-Youl;Choi, Eun-Young;Yoon, Hee-Jong
    • Journal of Korean Physical Therapy Science
    • /
    • v.2 no.3
    • /
    • pp.587-598
    • /
    • 1995
  • The purpose of this study was to test the microcurrent electrical neuromuscular stimulation on muscle soreness, serum creatine kinase levels and force deficits evident following a high-intensity eccentric exercise bout. 10 volunteer male subjects were randomly assigned to a treatment group or to a control group. Exercise consisted of high-intensity eccentric contractions of the elbow flexors. Resistance was reduced as subjects fatigued, until they reached exhaustion. Muscle soreness rating was determined using a visual analog scale. Serum creatine kinase levels were analyzed using a blood sample. Force deficits were determined by measures of maximal voluntary isometric contraction at $90^{\circ}$ of elbow flexion on a Orthotron II dynamometer. Muscle soreness rating, serum creatine kinase levels and maximal voluntary isometric contraction were determined at the before exercise and again at 24 and 48 hours postexericse. Treatments were applied immediately following exercise. The control group subjects rested following their exercise bout. Statistical analysis showed significant increases in muscle soreness rating and significant decreases in maximal voluntary isometric contraction when the before exercise was compared with 24 and 48 hour measures(p<0.01). No significant effects were observed between groups in muscle soreness rating and maximal voluntary isometric contraction(p>0.05). Highly significants differences in serum creatine kinase levels were found using on Analysis of variance(ANOVA) repeated measures between groups for each time cycles(p<0.001). This modality may have benefits when used early stage in the muscle damage.

  • PDF

Estimation of Motor Recovery using Characteristics of EMG during Isometric Muscle Contraction in Hemiparetic Wrist

  • Tae, Ki-Sik;Song, Sung-Jae;Kim, Young-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.8-16
    • /
    • 2008
  • The aim of this study was to evaluate the motor recovery in 4 chronic hemiparetic patients with Fugl-Meyer (FM) and EMG characteristics before and after the training program. The training was performed at 1hr/day, 5days/week during 6 weeks in 4 chronic stroke patients. Electromyographic activities of the affected hand were recorded during isometric wrist flexion/ extension movements. In all patients, FM was significantly improved after the 6-week training. Onset/offset delay of muscle contraction significantly decreased in the affected wrist after the training. The co-contraction ratio of flexor/extensor muscles decreased significantly. Also, onset/offset delay of muscle contraction and co-contraction ratio correlates significantly with upper limb motor impairment and motor recovery. This EMG technique allows an objective evaluation of changes in muscle activity in post-stroke patients, providing easily measurable, quantitative indices of muscle characteristics.

The Effects of Muscle Contraction by Electrical Stimulation to V Wave and Median Frequency (전기자극에 의한 근 수축이 V wave와 중앙주파수에 미치는 영향)

  • Mun, Dal-Ju;Jeong, Dae-In;Lee, Jung-Woo;Jeong, Jin-Gyu;Kim, Tae-Youl;Oh, Myung-Hwa
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.4 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • This study analyzed changes in action potential of supraspinal neuron and motor unit depending on maximum tolerance isometric contraction(MTIC) by electrical stimulation and examined influence of functional electrical stimulation (FES) on spinal neuron adaptation. It selected 40 university students in their twenties and divided into experimental groups of 25% MTIC(I), 50% MTIC I (II), 75% MTIC(III) and 100% MTIC(IV) depending on MTIC by electrical stimulation, and performed isometric contraction of plantar flexor muscle to each experimental group with given contraction for 20 times. It measured V/Mmax and MDF pre and post exercise, compared volume of contraction. 1. V/Mmax ratio showed no significant difference in comparison among experimental groups. 2. There was significant difference in median frequency of gastrocnemius and soleus in action potential motor unit according to comparison among experimental groups(p<.001). When contraction by electrical stimulation was maximum, change was greatest. This results suggest that muscle contraction by electrical stimulation was influence to action potential of spinal motor neuron system which appear optimal level though aspect and difference degree were not in accordance. Consequently, optimal stimulation level of MTIC(50%) by FES would be lead to central nerve adaptation. muscle contraction by electrical stimulation was influence highly to MDF which should be consider to fatigue of motor unit for muscle contraction by electrical stimulation.

  • PDF

The Effect of Aging on the Mechanism of Muscle Fatigue during Sustained Submaximal Isometric Contraction (노화가 지속적 최대하강도 수축시 근피로 기전에 미치는 영향)

  • Yoon, Te-Jin;Kim, Yong-Won;Chung, Chul-Soo;Hunter, Sandra K
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.51-59
    • /
    • 2005
  • To examine the influence of aging on the mechanism of muscle fatigue, we compared the magnitude of central and peripheral fatigue in young and old women before, during and after a sustained submaximaI isometric contraction of elbow flexor muscles. Twelve women (6 young. $20.7{\pm}1.2$ years and 6 old, $68.8{\pm}29$ years) performed a contraction at 20% of maximal voluntary contraction (MVC) torque with their non-dominant arm. The old women were weaker than the young women, however their endurance time for the 20% contraction was longer compared with the young women ($1822{\pm}444$ vs. $1061{\pm}678$ sec, P <. 05). Both groups had a similar reduction in voluntary activation ratio (VA) during and after the fatiguing contraction. However, the old women showed much greater variability in VA before and after the contraction ($91.61{\pm}4.54%$ and $76.70{\pm}19.55\;%$ range of $79{\sim}99$ to $87{\sim}99%$ respectively) compared with the young women ($95.71{\pm}1.86\;%$ and $83.46{\pm}7.57\;%$ range of $39{\sim}75$ to $69{\sim}90%$, respectively). Furthermore, the EMG activity of the elbow flexor muscles and triceps brachii was greater for the old women compared with the young women throughout the fatiguing contraction, indicating different activation strategies with age. Indices of peripheral fatigue including twitch properties, showed that fatigue within the muscle was more rapid for the young women compared with the old women. These results suggest that although old women are weaker than young women, they have greater endurance due to mechanisms within muscle. Furthermore, old women showed great variability in their ability to optimally activate all muscle fiber compared with young women for an isometric contraction.

Effect of Forearm Dynamic Taping on Muscle Activity of Extensor Carpi Radialis Brevis During Wrist Isometric and Isotonic Contraction (아래팔 다이나믹 테이핑 적용에 의한 손목 등척성과 등장성 수축 시 짧은 노쪽손목폄근 근활성도의 변화)

  • Huang, Tian-zong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Background: Lateral epicondylitis (LE) is the most common chronic musculoskeletal conditions of the upper extremity with pain and wrist extension disability. The tendon which is most affected is the extensor carpi radialis brevis (ECRB). Previous study evaluated the effect of taping technique on patient with LE, but no study investigated the changes of electromyography (EMG) on ECRB when using dynamic taping (DT) technique. Objects: The aim of this study was to investigate the effect of DT technique using dynamic tape on muscle activity of ECRB during wrist isometric extension, isotonic extension and flexion. Methods: Twenty-one healthy subjects volunteered to participate in this study. Subjects were instructed to perform wrist isometric extension, isotonic extension and flexion without and with DT on origin area of ECRB. Wrist isometric extension was performed at 75%, 50% and 25% (%maximal voluntary contraction force), respectively, based on maximum contraction force. Isotonic extension and flexion test used dumbbell. EMG data was collected from ECRB. Results: EMG of ECRB were statistically significant decrease in wrist isotonic extension after DT (p < 0.05). Significant increase in wrist isometric extension during 25% and 50% force task (p < 0.05). Conclusion: This study applied DT technique to suppress the wrist extensor muscles in 21 healthy adults in their twenties. Change in muscle activity was compared in the ECRB muscle during wrist isometric extension, isotonic extension and flexion task. Based on the results of this study, the DT technique applied to the wrist and forearm area can reduce the load on the wrist extensors when the wrist performs various movements during daily life movements or repetitive tasks, and by using these effects, excessive stress is applied to tennis elbow patients.

Development of a Fatigue Index Based on the Measurement of Localized Muscular Fatigue During the Cyclic Isometric Contraction (주기적 등척성 수축에서의 국소근육피로 측정을 통한 피로지수의 개발)

  • Jung, So-Ra;Chung, Min-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.87-96
    • /
    • 1993
  • Spectrum analysis of surface electromyogram (FMG) signals is an effective approach to the study of localized muscular fatigue during isometric contraction. Many investigators have con firmed the frequency of the EMG signals being lowered during sustained contaction. In this study, the cyclic loading tasks were performed, and a comparison was made for the median power frequency shift pattern of the EMG signals with the sustained contraction of the same load. The median power frequency shift of the EMG signals for the cyclic loading task was found to be a part of that for the sustained contraction. Based on this result, a new muscle fatigue index was computed by normalizing the duration of the sustained contraction. A fatigue index was obtained as a function of exertion level and the work/rest schedule. With the proposed fatigue index, it is possible to evaluate or predict the degree of muscular fatigue for a physically demanding task.

  • PDF

A Quantitative Analysis of Activation Pattern of Active Elbow Muscles (주관절 근육의 활성화 유형에 대한 정량적 분석)

  • Lee, Du-Hyoung;Lee, Young-Seock;Lee, Jin;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.413-420
    • /
    • 1997
  • In this paper, we analyzed the contraction patterns of active elbow muscles during isometric, concentric and eccentric contraction. The analysis parameters consist of frequency domain parameters (mean frequency, median frequency, peak frequency, peak power, skewness, kurtosis) and time domain paraseters (zero crossing, positive maxima, integrated EMG). The results of this study were as follows; The BR/BB of isometric contraction appeared to be Venter as the elbow joint was more extended. The BR /BB during concentric and eccentric contraction tended to increase with more extension of the elbow joint angle, but there was no significant difference between concentric and eccentric contraction. Further, the EMG power spectrum due to the type of contraction were different betwen eccentric and concentric contraction. According to the results, it was found that the activation pattern in elbow flexor muscles was different during three different muscle contraction pattern. Therefore, elbow flexor muscles should not be considered a single functioning unit. Especially, at the time domain analysis, IEMG is a dominant parameter for analysis of activation patterns, and the skewness kurtosis can be useful parameters in functional recognition for prosthesis control purpose.

  • PDF

Changes of Action Potential of Central Neuron by Maximal Voluntary Isometric Contraction (최대 수의적 등척성 수축력에 의한 중추신경원의 활동전위 변화)

  • Moon, Dal-Ju;Kim, Kye-Yoep;Jeong, Jin-Gyu;Kim, Sue-Hyun;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.3
    • /
    • pp.37-45
    • /
    • 2006
  • Purpose: This study analyzed changes in spinal neuron and action potential of motor unit depending on voluntary contraction on spinal neuron adaptation. Methods: It selected 80 university students in their twenties and divided into experimental groups of 25% MVIC (I), 50% MVIC (II), 75% MVIC (III) and 100% MVIC (IV) depending on maximum voluntary isometric contraction (MVIC) and performed isometric exercise of plantar flexor muscle to each experimental group with given contraction for 20 times. It measured Mmax, H/Mmax, Hmax latency, V/Mmax, V wave latency before and after exercise, compared method and volume of contraction. Results: H/Mmax ratio showed significant difference in comparison among groups (p<0.01) and there was difference in I and IV groups. V/Mmax ratio showed significant difference in comparison among experimental groups (p<0.05) and there was difference in I and IV groups. When voluntary contraction level was maximum, changes were greatest. However, no significantly difference was to Mmax, H latency and V wave latency. Conclusion: These results suggest that amplitude changes of voluntary contraction level, spinal neuron and supra-spinal neuron had a dose connection that the more contraction level, the better central activation seem to decrease highly for a short time.

  • PDF