• Title/Summary/Keyword: Isometric Contraction

Search Result 403, Processing Time 0.025 seconds

Characteristics of Median Frequency According to the Load During Fatiguing Isometric Exercise (등척성 운동시 운동강도에 따른 중앙주파수의 특성)

  • Lee, Su-Young;Shin, Hwa-Kyung;Cho, Sang-Hyun
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.141-149
    • /
    • 2003
  • Median frequency can be regarded as a valid indicator of local muscle fatigue. As local muscle fatigue develops, the muscle fiber conduction velocity decreases, the fast twitch fibers are recruited less, and consequently the median frequency shifts toward the lower frequency area. The aim of this study was to test the characteristics of the median frequency according to exercise load (30% and 60% of MVC on the biceps brachii, 40% and 80% of MVC on the vastus lateralis) during the fatiguing isometric exercise. Thirteen healthy male volunteer students of Yonsei University were recruited. After the testing maximal voluntary isometric contraction, three variables (initial median frequency, regression slope, fatigue index) from the regression line of MDF data were measured in each exercise load. The results showed that the regression slope and fatigue index were significantly different for the biceps brachii, but not for the vastus lateralis initial MDF was not significant difference according to the exercise load on both muscles. The regression slope and fatigue index could monitor physiologic muscle change during fatiguing isometric exercise. The results showed that two MDF variables reflect the local muscle fatigue according to the exercise load.

  • PDF

Relationship Between Compressive Force at L5/S1 and Erector Spinae Muscle Electromyography (L5/S1에 걸리는 부하염력과 척추기립근 근전도의 상관관계 분석)

  • Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.103-108
    • /
    • 1995
  • This study was performed to investigate a relationship between a biomechanical analysis of compressive force at L5/S1 and electromyographic analysis of erector spinae muscle during lifting task. In the experiment, isometric contractions at 25, 50, 75, 100%MVC for short duration and sustained isometric contractions at 50%MVC were performed. For muscle recruitment patten and compressive force analysis, rectified EMG amplitudes analysis and computerized biomechanical analysis were used. To achieve data, angles of neck, shoulder, elbow, wrist, hip, knee, ankle and length of body segments were measured. Results shows that trends of initial EMG rectified amplitude were similar to those of biomechanical calculation value and for sustained isometric contraction at 50%MVC EMG rectified amplitude of erector spinae muscle after 40seconds was increased up to level of 75%MVC. Based on the results of this study, biomechanical analysis should be supplemented considering muscle fatigue, and it is also suggested that work-rest cycle critera and the evaluation of back-pain injuries should include muscle fatigue.

  • PDF

The Inhibitory Effect of Pioglitazone on Agonist-dependent Vascular Contractility

  • Je, Hyun-Dong;Cha, Sung-Jae;Jeong, Ji-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.72-77
    • /
    • 2008
  • The present study was undertaken to determine whether pioglitazone treatment influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Pioglitazone decreased Rho-kinase activating agonist-induced contraction but not phorbol ester-induced contraction suggesting the least involvement of $Ca^{2+}$-independent thin filament regulation of contractility. Furthermore, pioglitazone decreased thromboxane $A_2$ mimeticinduced phosphorylation of MYPT1 at Thr855, the newly-highlighted site, instead of Thr696. In conclusion, this study provides the evidence and possible related mechanism concerning the vasorelaxing effect of pioglitazone as an antihypertensive on the agonist-induced contraction in rat aortic rings regardless of endothelial function.

The Inhibitory Effect of Eupatilin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong;Kim, Hyeong-Dong;Jeong, Ji Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • The present study was undertaken to investigate the influence of eupatilin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Eupatilin more significantly relaxed fluoride-induced vascular contraction than thromboxane $A_2$ or phorbol ester-induced contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, eupatilin significantly inhibited fluoride-induced increases in pMYPT1 levels. On the other hand, it didn't significantly inhibit phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the primarily inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1. This study provides evidence regarding the mechanism underlying the relaxation effect of eupatilin on agonist-induced vascular contraction regardless of endothelial function.

Effects of Eccentric Exercise on Torque-Angle Relationship of Human Tibialis anterior In-vivo (신장성 수축 운동에 의한 인체 하지 전경골근의 족배굴곡 토크-발목 각도 특성 변화)

  • Lee, Hae-Dong;Kim, Seung-Jae;Yasuo, Kawakami
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1575-1579
    • /
    • 2008
  • The purpose of this study was to investigate how maximum-effort eccentric exercise over different contraction ranges affects the characteristics of torque-angle relationship of human ankle plantarflexor in-vivo. Subjects were randomly assigned in two groups. One group (n=6) performed 120 maximum-effort eccentric ankle dorsiflexion contractions at short muscle length (ankle range of motion from -5 to 15 deg) and the other group (n=6) at long (ankle range of motion from 10 to 30 deg) muscle length. Eccentric exercise decreased the maximum isometric ankle plantarflexion torque ${\sim}40%$. It was found that the optimum ankle joint angle changed from 7.5 deg to 11.1 deg and 10.1 deg, shifted toward the longer muscle length, regardless of the exercise range. The results of this study suggest that eccentric exercise alters the characteristics of torqueangle relationship of the muscle but there is no differential effect of the eccentric contraction range.

  • PDF

Age-related difference of the 15 Characteristics Variables in Surface EMG Signals Generated Under Constant Load Contraction (일정 부하 수축 시 수집한 표면근전도 신호에서 검출한 15개 특성 변수들의 노화에 따른 차이)

  • Lee, Jin;Yoo, In-Gyu;Kim, Se-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1674-1680
    • /
    • 2008
  • The objective of this study is to compare age-related differences of 15 characteristic variables estimated from SEMG signals, which were obtained from the old group(62 subjects) and young group(72 subjects). The SEMG signals were recorded from biceps brachii muscle under sustained isometric elbow flexion contraction with constant load(4kg dumbbell) during 30 seconds. Ten time domain (ARV, RMS, MSA, MTA, ZC, MSF, MTF, MSD, MTD, MSS) and five frequency domain(MNF, MDF, $f_{max}$, $P_{max}$, $P_{to}$) variables were extracted from the SEMG signals and then statistically analyzed, respectively. The findings of the analysis indicate significant age-related differences in the SEMG signal during constant load contraction.

Muscarinic Receptor Subtype Controlling the Carbachol-Induced Muscle Contraction in Guinea Pig Gastric Antrum

  • Rhee, Jong-Chul;Uhm, Dae-Yong;Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.105-111
    • /
    • 2000
  • Stimulation of muscarinic receptors by carbachol (CCh) in the circular smooth muscle of the guinea pig gastric antrum causes muscle contraction. In the present study, muscarinic receptor subtype controlling the muscle contraction in response to CCh was studied using putative muscarinic receptor antagonists. Isometric force of the isolated circular muscle strips was measured in an organ bath. CCh contracted the muscle in a dose-dependent way, and each of the three muscarinic receptor antagonists, 4-diphenylacetoxy- N-methylpeperdine methiodide (4-DAMP), methoctramine and pirenzepine shifted the concentration- response curves to the right without significantly reducing the maximum force. The affinities of the muscarinic antagonists $(pA_2\;values)$ obtained from Schild plot analysis were 10.15, 7.05 and 6.84 for 4-DAMP, methoctramine and pirenzepine, respectively. These results suggest that the $M_3-subtype$ mainly mediate the muscle contraction in response to CCh in guinea pig gastric antrum.

  • PDF

Characteristics of Muscle Contraction During the Wrist Movement in Chronic Hemiplegic Stroke Patients (만성 편마비 환자의 손목 운동 시 근수축 특성)

  • 태기식;김사엽;송성재;이지용;이영희;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.246-249
    • /
    • 2004
  • The purpose of this study was to investigate the characteristics between EMG timing of muscle contraction and motor impairment in chronic hemiplegic stroke patients. Delay time and co-contraction of 4 patients who had stroke less than 3 years were measured during isometric wrist flexion and extension along the 3 seconds beep signal. Onset and offset of muscle contraction were significantly delayed on the more affected sides than control sides. Offset was significantly delayed than the onset on the affected sides in wrist flexion. Also, recruitment of antagonist was larger than agonist on the affected sides. Co-contraction ratio on the affected side was significantly smaller than control sides in wrist flexion. In affected sides, Fugl-Meyer motor assessment(FMA) shows the correlation of onset delay in wrist flexion and extension. However, co-contraction ratio correlated with FMA in wrist flexion. EMG assessment is likely to be useful outcome measure and provide insights into mechanism for motor recovery in stroke patients.

  • PDF

Vasodilatory Effect of the Alkaloid Component from the Roots of Cynanchum wifordi Hemsley (백하수오 알칼로이드 성분의 혈관이안 효능)

  • 장기철;이동웅
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.584-590
    • /
    • 2000
  • Natural products are one of the useful source of cardiovascular drugs, in particular, when they have antioxidant activity. Gagaminine, an alkaloid isolated from the roots of Cynanchum wilfordi Hemsley, has been reported to potently inhibit the aldehyde oxidase activity ({TEX}$IC_{50}${/TEX}=0.8$\mu$M) and reduce lipid peroxidation. However, the effect of gagaminine on vascular smooth muscle has not yet been investigated. In the present study, we examined whether gagaminine relaxes vascular smooth muscle by isometric tension study. In order to observe its relaxation effect on the arteries, conductivel vessel (rat thoracic aorta) and resistance vessel (pig coronary artery) were purposely used. Results indicated that gagaminine relaxed in a concentration-dependent manner $\alpha$-adrenoceptor agonist, phenylephrine (PE)-induced contraction of rat aorta. Pretreatment with gagaminine inhibited PE-induced contraction, noncompetitively. {TEX}$Ca^{2+}${/TEX}-induced contraction was significantly diminished by gagaminine. In pig coronary artery, gagaminine relaxed thromboxane receptor (U 46619)-mediated contraction in dose-dependent manner. Pretreatment with gagaminine also reduced the maximum contraction induced by KCl. These observations strongly suggest that agagminnine relaxes vascular smooth muscle, irrespective of both resistance and conductive artery. We demonstrate that gagaminine, a potent natural antioxidant, has a significant vasodilatory effect and its action mechanism van be ascribed at least in part to {TEX}$Ca^{2+}${/TEX} antagonistic action as evidenced by inhibition {TEX}$Ca^{2+}${/TEX}-induced contraction (rat aorta) and KCl-induced contraction (porcine artery). Furthermore, neither $\alpha$ -adrenoceptor nor thromboxane receptor seems responsible for the relaxation of gagaminine.

  • PDF

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF