• Title/Summary/Keyword: Isoleucine metabolism

Search Result 22, Processing Time 0.026 seconds

Correlation analysis of human urinary metabolites related to gender and obesity using NMR-based metabolic profiling

  • Kim, Ja-Han;Park, Jung-Dae;Park, Sung-Soo;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.46-66
    • /
    • 2012
  • Metabolomic studies using human urine have shown that human metabolism is altered by a variety of environmental, cultural, and physiological factors. Comprehensive information about normal human metabolite profiles is necessary for accurate clinical diagnosis of disease and for disease prevention and treatment. In this study, metabolite correlation analyses, using $^1H$ nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistics, were performed on human urine to compare metabolic differences based on gender and/or obesity in healthy human subjects. First, we applied partial least squares discriminant analysis to the NMR spectral data set to verify the data's ability to discriminate by gender and obesity. Then, the differences in metabolite-metabolite correlation between male and female, and between normal and high body mass index (obese) subjects were investigated through pairwise correlations. Creatine and several metabolites, including isoleucine, trans-aconitate, and trimethylamine N-oxide (TMAO), exhibited different quantitative relationships depending on gender. Dimethylamine had a different correlation with glycine and TMAO, based on gender. The correlation of TMAO with amino acids was considerably lower in obese, compared to normal, subjects. We expect that the results will shed light on the metabolic pathways of healthy humans and will assist in the accurate diagnosis of human disease.

Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism

  • Kim, Young-Cheon;Lee, Dong Sook;Jung, Youjin;Choi, Eun Bin;An, Jungeun;Lee, Sanghyeob;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7-overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.

Long-term Clinical Consequences in Patients with Urea Cycle Disorders in Korea: A Single-center Experience (요소회로대사 질환 환자들의 장기적인 임상 경과에 대한 단일 기관 경험)

  • Lee, Jun;Kim, Min-ji;Yoo, Sukdong;Yoon, Ju Young;Kim, Yoo-Mi;Cheon, Chong Kun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • Purpose: Urea cycle disorder (UCD) is an inherited inborn error of metabolism, acting on each step of urea cycle that cause various phenotypes. The purpose of the study was to investigate the long-term clinical consequences in different groups of UCD to characterize it. Methods: Twenty-two patients with UCD genetically confirmed were enrolled at Pusan National University Children's hospital and reviewed clinical features, biochemical and genetic features retrospectively. Results: UCD diagnosed in the present study included ornithine transcarbamylase deficiency (OTCD) (n=10, 45.5%), argininosuccinate synthase 1 deficiency (ASSD) (n=6, 27.3%), carbamoyl-phosphate synthetase 1 deficiency (CPS1D) (n=3, 13.6%), hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHHS) (n=2, 9.1%), and arginase-1 deficiency (ARG1D) (n=1, 4.5%). The age at the diagnosis was 32.7±66.2 months old (range 0.1 to 228.0 months). Eight (36.4%) patients with UCD displayed short stature. Neurologic sequelae were observed in eleven (50%) patients with UCD. Molecular analysis identified 37 different mutation types (14 missense, 6 nonsense, 6 deletion, 6 splicing, 3 delins, 1 insertion, and 1 duplication) including 14 novel variants. Progressive growth impairment and poor neurological outcomes were associated with plasma isoleucine and leucine concentrations, respectively. Conclusion: Although combinations of treatments such as nutritional restriction of proteins and use of alternative pathways for discarding excessive nitrogen are extensively employed, the prognosis of UCD remains unsatisfactory. Prospective clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth or neurological outcomes and decrease metabolic crisis episodes in patients with UCD.

Altered Amino Acid Metabolic Patterns in the Plasma of Rat Models with Adenovirus Infection

  • Paik, Man-Jeong;Shim, Woo-Young;Moon, Seung-Min;Kim, Yeon-Mi;Kim, Dong-Wan;Kim, Kyoung-Rae;Kim, Sun-A;Shim, Jeom-Soon;Choi, Sang-Dun;Lee, Gwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1569-1574
    • /
    • 2011
  • The presence of replication-competent adenovirus (RCA) subpopulations in adenoviral vector products raises a variety of safety issues for development of therapies based on gene therapy. To analyze the differing effects of adenoviral vector and RCA in vivo, we examined alterations in amino acids (AAs) using rat plasma following injection of ${\beta}$-galactosidase expressing recombinant adenovirus (designated rAdLacZ) or RCA. Plasma AAs were examined by gas chromatography-mass spectrometry. A total of 16 AAs were positively measured. In the rAdLacZ group compared to the control group, the level of aspartic acid was significantly increased (Student's t-test), while the level of glutamic acid was significantly reduced. Additionally, in the RCA group compared to the control group, the level of four AAs, valine, leucine, and isoleucine as branched-chain amino acids, and proline were significantly increased, whereas the levels of three AAs, glycine, threonine, and glutamic acid were significantly reduced. Altered plasma free AA metabolic patterns in rAdLacZ and RCA groups, compared with the control group, may explain the disturbance of AA metabolism related to viral infection.

Identification of Two Novel BCKDHB Mutations in Korean Siblings with Maple Syrup Urine Disease Showing Mild Clinical Presentation

  • Ko, Jung Min;Shin, Choong Ho;Yang, Sei Won;Cheong, Hae Il;Song, Junghan
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Maple syrup urine disease (MSUD) is a disorder that involves the metabolism of branched chain amino acids, arising from a defect in branched-chain ${\alpha}$-keto acid dehydrogenase complex. Mutations have been identified in the BCKDHA, BCKDHB, or DBT genes, which encode different subunits of the BCKDH complex. Although encephalopathy and progressive neurodegeneration are its major manifestations, the severity of the disease may range from the severe classic type to milder intermediate variants. We report two Korean siblings with the milder intermediate MSUD who were diagnosed with MSUD by a combination of newborn screening tests using tandem mass spectrometry and family genetic screening for MSUD. At diagnosis, the patients' plasma levels were elevated for leucine, isoleucine, valine, and alloisoleucine, and branched-chain ${\alpha}$-keto acids and branched-chain ${\alpha}$-hydroxy acids were detected in their urine. BCKDHA, BCKDHB, and DBT analysis was performed, and two novel mutations were identified in BCKDHB. Our patients were thought to have the milder intermediate variant of MSUD, rather than the classic form. Although MSUD is a typical metabolic disease with poor prognosis, better outcomes can be expected if early diagnosis and prompt management are provided, particularly for milder forms of the disease.

Metabolomics reveals potential biomarkers in the rumen fluid of dairy cows with different levels of milk production

  • Zhang, Hua;Tong, Jinjin;Zhang, Yonghong;Xiong, Benhai;Jiang, Linshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.79-90
    • /
    • 2020
  • Objective: In the present study, an liquid chromatography/mass spectrometry (LC/MS) metabolomics approach was performed to investigate potential biomarkers of milk production in high- and low-milk-yield dairy cows and to establish correlations among rumen fluid metabolites. Methods: Sixteen lactating dairy cows with similar parity and days in milk were divided into high-yield (HY) and low-yield (LY) groups based on milk yield. On day 21, rumen fluid metabolites were quantified applying LC/MS. Results: The principal component analysis and orthogonal correction partial least squares discriminant analysis showed significantly separated clusters of the ruminal metabolite profiles of HY and LY groups. Compared with HY group, a total of 24 ruminal metabolites were significantly greater in LY group, such as 3-hydroxyanthranilic acid, carboxylic acids, carboxylic acid derivatives (L-isoleucine, L-valine, L-tyrosine, etc.), diazines (uracil, thymine, cytosine), and palmitic acid, while the concentrations of 30 metabolites were dramatically decreased in LY group compared to HY group, included gentisic acid, caprylic acid, and myristic acid. The metabolite enrichment analysis indicated that protein digestion and absorption, ABC transporters and unsaturated fatty acid biosynthesis were significantly different between the two groups. Correlation analysis between the ruminal microbiome and metabolites revealed that certain typical metabolites were exceedingly associated with definite ruminal bacteria; Firmicutes, Actinobacteria, and Synergistetes phyla were highly correlated with most metabolites. Conclusion: These findings revealed that the ruminal metabolite profiles were significantly different between HY and LY groups, and these results may provide novel insights to evaluate biomarkers for a better feed digestion and may reveal the potential mechanism underlying the difference in milk yield in dairy cows.

Molecular and Enzymatic Features of Homoserine Dehydrogenase from Bacillus subtilis

  • Kim, Do Hyeon;Nguyen, Quyet Thang;Ko, Gyeong Soo;Yang, Jin Kuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1905-1911
    • /
    • 2020
  • Homoserine dehydrogenase (HSD) catalyzes the reversible conversion of ʟ-aspartate-4-semialdehyde to ʟ-homoserine in the aspartate pathway for the biosynthesis of lysine, methionine, threonine, and isoleucine. HSD has attracted great attention for medical and industrial purposes due to its recognized application in the development of pesticides and is being utilized in the large scale production of ʟ-lysine. In this study, HSD from Bacillus subtilis (BsHSD) was overexpressed in Escherichia coli and purified to homogeneity for biochemical characterization. We examined the enzymatic activity of BsHSD for ʟ-homoserine oxidation and found that BsHSD exclusively prefers NADP+ to NAD+ and that its activity was maximal at pH 9.0 and in the presence of 0.4 M NaCl. By kinetic analysis, Km values for ʟ-homoserine and NADP+ were found to be 35.08 ± 2.91 mM and 0.39 ± 0.05 mM, respectively, and the Vmax values were 2.72 ± 0.06 μmol/min-1 mg-1 and 2.79 ± 0.11 μmol/min-1 mg-1, respectively. The apparent molecular mass determined with size-exclusion chromatography indicated that BsHSD forms a tetramer, in contrast to the previously reported dimeric HSDs from other organisms. This novel oligomeric assembly can be attributed to the additional C-terminal ACT domain of BsHSD. Thermal denaturation monitoring by circular dichroism spectroscopy was used to determine its melting temperature, which was 54.8℃. The molecular and biochemical features of BsHSD revealed in this study may lay the foundation for future studies on amino acid metabolism and its application for industrial and medical purposes.

Effects of Dietary Energy Concentration and Lysine on the Digestible Energy Ratio for Apparent Amino Acid Digestibility in Finishing Barrows

  • Cho, S.B.;Lee, H.J.;Chung, I.B.;Long, H.F.;Lim, J.S.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.232-236
    • /
    • 2008
  • This experiment was performed to investigate the effects of two energy levels and four lysine:digestible energy (DE) ratios on the apparent digestibility of nutrients in finishing pigs. The experiment was conducted using a $2{\times}4$ randomized complete block (RCB) design with three replicates. Twenty-four cross-bred finishing barrows ((Landrace${\times}$Yorkshire)${\times}$Duroc) with an average body weight of $64.2{\pm}0.69kg$ were assigned to one of eight treatments. Each barrow was placed in an individual metabolism crate and dietary treatment and water was provided ad libitum. Diets were designed to contain lysine:ME ratios of 1.5, 1.8, 2.1 and 2.4 g/Mcal at 3.35 and 3.6 Mcal/kg of diet in a $4{\times}2$ factorial arrangement. Dry matter (DM), ash, Ca and P digestibility were not affected by energy density or lysine:DE ratios. Crude fat digestibility increased as the energy density increased from 3.35 to 3.6 Mcal of DE/kg. Increasing the lysine:DE ratio also increased crude protein digestibility. There were no interactions between energy density and lysine:DE ratio in terms of nutrient digestibility. Nitrogen excretion via feces was not affected by energy density and lysine:DE ratio, while nitrogen excretion via urine was significantly affected by energy density and lysine:DE ratio. The apparent digestibility of all amino acids except for isoluecine, arginine and aspartic acid as well as average values of essential amino (EAA), non-essential amino acids (NEAA) and total amino acid digestibility (p>0.05) were not affected by energy density. The apparent digestibility of all amino acids except for leucine, proline, alanine and tyrosine, NEAA and total amino acid digestibility were significantly affected by lysine: DE ratio (p<0.05). Interactive effects of energy and lysine:DE ratio also significantly affected amino acid digestibility except for isoleucine, alanine, cystine, leucine, phenylalanine, glutamine and proline (p<0.05). In conclusion, these results suggest that maintaining the appropriate lysine:DE ratio becomes more important as the energy density of the diet increases. Consequently, increasing the lysine:DE ratio can result in increased crude protein digestibility and urinary nitrogen excretion, although apparent protein digestibility and nitrogen excretion were not affected by energy density Furthermore, increasing the lysine:DE ratio also increased the apparent digestibility of essential amino acids, except for leucine, regardless of energy density. The optimum lysine:DE ratio for maximum essential amino acid digestibility of the $64.2{\pm}0.69kg$ pig is approximately 2.4 g of lysine/Mcal of DE.

Hypoallergenic and Physicochemical Properties of the A2 β-Casein Fractionof Goat Milk

  • Jung, Tae-Hwan;Hwang, Hyo-Jeong;Yun, Sung-Seob;Lee, Won-Jae;Kim, Jin-Wook;Ahn, Ji-Yun;Jeon, Woo-Min;Han, Kyoung-Sik
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.940-947
    • /
    • 2017
  • Goat milk has a protein composition similar to that of breast milk and contains abundant nutrients, but its use in functional foods is rather limited in comparison to milk from other sources. The aim of this study was to prepare a goat A2 ${\beta}$-casein fraction with improved digestibility and hypoallergenic properties. We investigated the optimal conditions for the separation of A2 ${\beta}$-casein fraction from goat milk by pH adjustment to pH 4.4 and treating the casein suspension with calcium chloride (0.05 M for 1 h at $25^{\circ}C$). Selective reduction of ${\beta}$- lactoglobulin and ${\alpha}_s$-casein was confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography. The hypoallergenic property of A2 ${\beta}$-casein fraction was examined by measuring the release of histamine and tumor necrosis factor alpha from HMC-1 human mast cells exposed to different proteins, including A2 ${\beta}$-casein fraction. There was no significant difference in levels of both indicators between A2 ${\beta}$-casein treatment and the control (no protein treatment). The A2 ${\beta}$-casein fraction is abundant in essential amino acids, especially, branched-chain amino acids (leucine, valine, and isoleucine). The physicochemical properties of A2 ${\beta}$-casein fraction, including protein solubility and viscosity, are similar to those of bovine whole casein which is widely used as a protein source in various foods. Therefore, the goat A2 ${\beta}$-casein fraction may be useful as a food material with good digestibility and hypoallergenic properties for infants, the elderly, and people with metabolic disorders.

Association of the A-G Polymorphism in Porcine Adiponectin Gene with Fat Deposition and Carcass Traits

  • Dai, L.H.;Xiong, Y.Z.;Deng, C.Y.;Jiang, S.W.;Zuo, B.;Zheng, R.;Li, F.E.;Lei, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.779-783
    • /
    • 2006
  • The adiponectin gene is known to be involved in the regulation of energy homeostasis involving food intake, carbohydrate and lipid metabolism. Human adiponectin gene polymorphisms have been recently reported to be associated with obesity, insulin sensitivity and the risk of type 2 diabetes. The present study was carried out to investigate the porcine adiponectin gene as a candidate gene for fat deposition and carcass traits. A mutation of A178G of the porcine adiponectin gene that resulted in substitution of the amino acid Isoleucine to Valine was identified. AcyI PCR-RFLP was used to detect the polymorphism of the genotypes in five different pig populations (Large White, Landrace, Duroc, Chinese breeds Meishan and Qingping). The A allele frequency was significantly higher among subjects from Chinsese lard type breeds, while the G allele was the only one present in those from Western lean type breeds. To determine if there was an association of the polymorphism with phenotypic variation, the mutation was tested in 267 pigs of the "Large $White{\times}Meishan$" F2 resource population. The results of association analyses showed significant associations of the genotypes with fat deposition and carcass traits. Allele G was significantly associated with increase in loin eye height, loin eye area and lean meat percentage and bone percentage, and decrease in fat mean percentage, ratio of lean to fat, shoulder fat thickness, 6-7 rib fat thickness, thorax-waist fat thickness and buttock fat thickness. The substitution of A178G (Ile60Val) happened to be located at amino acid 60 in the collagenous domain of porcine adiponectin which might affect the association into higher-order structures, and accordingly affect the posttranslational modifications and optimal biological activity of the multimeric forms. The identified functional polymorphism provides new evidence of adiponectin as an important candidate gene affecting fat deposition and carcass traits in pigs.