• Title/Summary/Keyword: Isolation number

Search Result 527, Processing Time 0.027 seconds

Increacing profit of dairy farm through improvement of raw milk quality : According to SCC and mastitis (유질개선을 통한 낙농가 소득증대 - SCC와 유방염을 중심으로-)

  • 손봉환;최진영;배도권;정충일
    • Korean Journal of Veterinary Service
    • /
    • v.20 no.3
    • /
    • pp.261-279
    • /
    • 1997
  • The study for a effect of monitoring on bovine mastitis was conduced for improvement of raw milk from Jan. to Dec. in 1996. Sampling the milk of 367 cows(1, 406 quarters) from 5 herds in Inchon and were carried out California mastitis test(CMT), somatic cell count(SCC), isolation of pathogens and antibiotic sensitivity tests. The results were summarized as follows, 1. The number of bovine mastitis was 177 cows(48.2%) and 371 quarters(26.4%) : clinical mastitis : 25 cows(6.8%), 32 quarters(2.3%) and subclinicsl mastitis : 152 cows(41.4% ), 339 quarters(24.1%). Incidence rate of mastitis by season were Summer 52.0%, Fall and Winter 48% and Spring 41%. Incidence rate of mastitis by quarters were Summer 30%, Fall 28%, Winter 25% and Spring 21%, respectively. 2. In the distribution of CMT degree by quarter, CMT positive(CMT$\pm$) of 1, 406 quarters milk were 50.1% (704 quarters). The ratio of CMT positivity by quarter were left front quarter 55.8%, right front quarter 48.9%, right hind quarter 48.6% and left hind quarter 47% The ratio of CMT positivity by season were Summer 54.1%, Fall 49.7%, Spring 48.5% and Winter 48% 3. The highest mean SCC by season among 5 herds was "A" herd. Mean SCC (cell/ml) of A herd were Summer 2, 032, 000cells/ml, Fall 1, 109, 000cells/ml, Winter 782, 000cells/ml and Spring 577, 000cells/ml. The lowest mean SCC by season among 5 herds was "E" herds. Mean SCC of E herd were Summer 1, 064, 000cells/ml, Spring 795, 000cells/m1, Fall 429, 000cells/ml and Winter 400, 000cells/ml. Mean SCC of the other herds by season were little difference. 4. The milk samples of "A" herd were collected from 10 cows. In 3 seasons, mean SCC of No. 2 and 3 cows were than 1, 000, 000cells/ml. In 1 season, mean SCC of No. 6, 7 and 8 cows were than 1, 000, 000cells/ml. The more than mean SCC 1, 000, 000cells/ml of cows by season were distributed Summer 4 cows, Winter 3 cows, Spring and Fall 1 cow respectively. The milk samples of "B" herd were collected from 14 cows. In 3 seasons, mean SCC of No. 1 cow was more than 1, 000, 000cells/ml. In 2 seasons, mean SCC of No. 5, 9 and 14 cows were more than 1, 000, 000cells/ml. In 1 season, No. 3, 6 and 7 cows were more than 1, 000, 000cells/ml. The more than mean SCC 1, 000, 000cells/ml of cows by season were distributed Fall and Winter 4 cows respectively, Summer 3 cows and Spring 1 cow. The milk samples of "C" herd were collected from 18 cows. In 2 seasons, mean SCC of No. 16 cow was more than 1, 000, 000cells/ml. In 1 season, mean SCC of No. 1, 2, 6, 7, 13, 15 and 18 cows were more than 1, 000, 000cells/ml respectively. The more than mean SCC 1, 000, 000cells/ml of cows by season were distributed Summer 5 cows, Fall 3 cows, Spring 2 cows and Winter 1 COW. The milk sampes of "D" herd were collected 24 cows. In 3 season, mean SCC of No. 14 cow was more than 1, 000, 000cells/ml. In 2 seasons, mean SCC of No. 14 and 18 cows were more than 1, 000, 000cells/ml. In 1 season, mean SCC of No. 1, 2, 3, 8, 12, 17, 19, 20 and 21 cows were more than 1, 000, 000cells/ml. The more than mean SCC 1, 000, 000cells/ml of cows were distributed Fall 15 cows, Spring and Winter 4 cows respectively and Summer 3 cows. The milk samples of "E" herd were collected from 27 cows. In 2 seasons, mean SCC of No. 6, 7 and 21 cows were more than 1, 000, 000cells/ml. In 1 season, mean SCC of No. 2, 4, 7, 11, 14, 16 and 23 cows were more than 1, 000, 000cells/ml. The more than mean SCC 1, 000, 000cells/ml of cows were distributed Spring and Fall 5 cows respectively, Summer and Winter 2 cows, respectively. 5. The rate of isolated pathogenic microorganisms from bovine mastitis were summarized as follows : Staphylococcus sp 168 strains(45.8%), Streptococcus sp 82 strains(22.3%), Gram(-) sp 45 strains(12.3%), Gram(+) sp 51 strains and the other sp 21 strains(5.7%). 6. The highest of antibiotic sensitivity test of each microorganism was summarized as follows : Staphyolcoccus sp - cephalosporin 76%, gentamicin 55%, Streptococcus sp - ampicillin 61%, cephalosporin 63%, Gram(-) sp - gentamicin 58%, Gram(+) sp - cephalosporin 63%, The other sp - cephalosporin 90%. Microorganisms showed the highest sensitivity(68%) to cephalospsorin. Microorganisms showed the highest sensitivity(68%) to cephalospsorin.

  • PDF

Identification and Characterization of Lactobacillus salivarius subsp. salivarius from Korean Feces

  • Bae, Hyoung-Churl
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.89-119
    • /
    • 2004
  • This study was conducted to isolate lactobacilli having probiotic characteristics to be used as health adjuncts with fermented milk products. Acid tolerant strains were selected in Lactobacilli MRS broth adjusted to pH 4.0 from 80 healthy persons (infants, children and adults). And bile tolerant strains were examined in Lactobacilli MRS broth in which 1.0% bile salt was added. By estimation above characteristics, the strains No. 27, which was isolated from adult feces, was selected and identified as Lactobacillus salivarius subsp. salivarius based on carbohydrate fermentation and 16S rDNA sequencing. It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at $37^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by $0.9{\sim}1.0%$ at $37^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced $23{\sim}38%$ of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 hours at $37^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with $15{\sim}25$ mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. Purified ${\alpha}$-galactosidase was obtained by DEAE-Sephadex A-50 ion exchange chromatography, Mono-Q ion exchange chromatography and HPLC column chromatography from L. salivarius subsp. salivarius 27. The specific activity of the purified enzyme was 8,994 units/mg protein, representing an 17.09 folds purification of the original cell crude extract. The molecular weight of enzyme was identified about 53,000 dalton by 12% SDS-PAGE. Optimal temperature and pH for activity of this enzyme were $40^{\circ}C$ and 7.0 respectively. The enzyme was found to be stable between 25 and $50^{\circ}C$. ${\alpha}$-galactosidase activity was lost rapidly below pH 5.0 and above pH 9.0. This enzyme was liberated galactose from melibiose, raffinose, and stachyose, and also the hydrolysis rate of substrate was compound by HPLC. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.

  • PDF

A Simple Isolating Method of Preantral Follicles from Mouse Ovaries (생쥐 난소에서 Preantral Follice의 단순 분리법)

  • Kim, Ju-Hwan;Park, Kee-Sang;Song, Hai-Bum;Chun, Sang-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • Objective: Our present studies were conducted to examine more effective isolating method of preantral follicles from mouse ovaries. Methods: ICR mice (3-6 weeks old) were sacrificed through cervical dislocation and their ovaries were removed and put into watch glasses containing Hams F-10 supplemented with 10% fetal bovine serum (FBS). Preantral follicles were isolated by three different methods; 1) enzymatical method and 2) mincing method, and 3) scraping method. Enzymatical method was carried out as following. Ovaries were bisected with a pair of fine 30G needles. Bisected ovaries were incubated at $37^{\circ}C$ and 5% $CO_2$ incubator in 2-well dish containing Hams F-10 supplemented with collagenase 600 lU/ml and DNAse 20 lU/ml. After 20 min., follicles were isolated by repeated pipetting. Isolated preantral follicles were collected, and the remnant of tissues was placed in incubator and previous procedure was repeated. Mincing method was carried out with a pair of fine 30G needles attached to 1 ml syringes and minced ovary. Scraping method was carried out with a pair of fine 30G needles and scratched to surface of ovary. The differences between isolating methods were analyzed using Student's t-test and Chi-square. Results were considered statistically significant when ${\rho}$ value was less than 0.05. Results: In handling time, mincing or scraping method ($28{\pm}3.42$ min or $16{\pm}1.58$ min) were significantly (p<0.00001) shorter than enzymatical method ($72{\pm}1.69$ min), and scraping method was significantly (p<0.01) shorter than mincing method. Total number of isolated follicles was significantly (p<0.0001) higher in enzymatical method ($49.8{\pm}3.91$) than in mincing or scraping method ($25.3{\pm}2.33$ or $20.5{\pm}1.75$). Isolated follicles in ${\leq}$90${\mu}m$ were significantly (p<0.005) higher in enzymatical method ($15{\pm}1.71$) than in mincing or scraping method ($7.8{\pm}0.98$ or $8.1{\pm}1.31$). In 91~130 ${\mu}m$, isolated follicles were significantly (p<0.0005) higher in enzymatical method ($33{\pm}3.27$) than in mincing or scraping method ($16.3{\pm}1.82$ or $10.7{\pm}1.38$). In ${\geq}$ 131 ${\mu}m$, isolated follicles were not significantly differences between all groups. In equal sizes, the rate of isolated follicles in ${\leq}$ 90 ${\mu}m$ was highest in scraping method (39.6% vs. enzymatical method: 30.1%, p<0.05; mincing method: 30.9%, p=0.11719, NS). Rate of follicles in $91{\sim}130$ ${\mu}m$ was significantly (p<0.05) lower in scraping method (52.7%) than in enzymatical or mincing method (66.3% or 64.5%). Rate of follicles in ${\geq}$131 ${\mu}m$ was highest in scraping method (8.3% vs. enzymatical or scraping method: 3.6%, p<0.05 or 4.6%, p=0.19053, NS). Conclusions: This study suggests that scraping method is simple and useful for isolation of preantral follicles, because this method reduced handling time and recovered enough follicles. The recovered rate of isolated follicles in diameter of 91 ~ 130 ${\mu}m$ was highest in all methods.

  • PDF

Studies on the Amylase Production by Bacteria (세균(細菌)에 의(依)한 Amylase생산(生産)에 관한 연구(硏究))

  • Park, Yoon-Joong
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 1970
  • 1. Isolation and identification of amylase-producing bacteria. The powerful strain A-12 and S-8 were respectively isolated from air and soil after screening a large number of amylase-producing bacteria. Their bacterial characteristics have been investigated and it has been found that all characteristics of strain A-12 and S-8 are similar to Bac. subtilis of Bergey's manual except for the acid formation from a few carbohydrates and the citrate utilization, i.e., the strain A-12 shows negative in the citrate utilization, and the acid formation from arabinose and xylose, S-8 shows negative in the acid formation from xylose. 2. Amylase production by Liquid cultures with solid materials. Several conditions for amylase production by strain A-12 in stationary cultures have been studied. The results obtained are as follows. (1) The optimum conditions are:temperature $35^{\circ}C$, initial pH 6.5 to 7.0 and incubation time 3 to 4 days. (2) The amylase production is not affected by the preservation period of the stock cultures. (3) Among the various solid material, the defatted soy bean is found to be the best for t1e amylase production. However, the alkali treatment of the defatted soy bean gives no effect contrary to the cage of defatted rape seed. The addition of soluble starch to the alkali extract of defatted soy bean shows the increased amylase production. (4) Up to 1% addition of ethanol to carbon dificient media gives the improved amylase production, whereas the above effect is not found in the case of carbon rich media. (5) The amylase production can be increased 2.5 times when 10% of defatted soy bean is admixed to cheaply available wheat bran. (6) The excellent effect is found for amylase production when 20% of wheat bran is admixed to defatted dry milk which is a poor medium. The activity is found to be $D^{40^{\circ}}_{30'}$ 7,000(L.S.V. 1,800) in 10% medium. (7) No significant effect is observed due to the addition of various inorganic salts. 3. Amylase production by solid cultures. Several conditions for amylase production by strain A-12 in wheat bran cultures have been studied and the results obtained are as follows. (1) The optimum conditions: are temperature $33^{\circ}C$, incubation lime 2 days, water content added 150 to 175% and the thickness of the medium 1.5cm, The activity is found to be $D^{40^{\circ}}_{30'}$ 36,000(L.S.V. 15,000) (2) No significant effect is found in the case of the additions of various organic and inorganic substances.

  • PDF

Microbiological Studies on Feed Supplements (사료첨가제(飼料添加劑)의 미생물오염(微生物汚染)에 관(關)하여)

  • Park, Su Kyung;Tak, Ryun Bin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.132-140
    • /
    • 1986
  • Eighty one products from 36 kinds of vitamin and mineral feed supplement collected during August, 1984 to February, 1985 were examined for microbiological contamination. In addition, 83 strains of coliform isolated from the samples were tested for the resistance to 8 kinds of antimicrobial drugs and distribution of R plasmid. General bacteria were detected in all of samples tested. Bacterial population was varied from less than 10 per gram of the sample to 1,400,000 per gram and 34 (42%) of 81 samples were contaminated with 100 to 1,000 cells per gram. Coliform isolation, which was more frequent in samples with larger number of general bacteria, was possible in 14 (17.3%) out of 81 samples tested and 6 (33.3%) out of 18 companies were coliform positive in their products. Forty one (49.4%) out of 83 coliform isolates were fecal coliform. The frequency of resistant strains was the highest to sulfadimethoxine (Sa) with 92.8% and followed by streptomycin (Sm, 67.5%), tetracycline (Tc, 50.6%), kanamycin (Km, 26.5%), chloramphenicol (Cm, 18.1%) and ampicillin (Am, 15.7%). No strain was resistant to nalidixic acid (Na) and gentamicin (Gm). The resistance frequency of fecal coliform strains were higher compare to non-fecal coliform strains. There were minimum inhibitory concentration (MIC) of $3,200{\mu}g/m{\ell}$ or higher in 7 strains to Am, 3 to Sm and 3 to Km, and 70 strains had MIC of $1,600{\mu}g/m{\ell}$ of higher to Sa while Tc had MICs from $1.6{\mu}g/m{\ell}$ to $400{\mu}g/m{\ell}$. All strains had MICs of $6.3{\mu}g/m{\ell}$ of lower to Na and $3.1{\mu}g/m{\ell}$ of lower to Gm. Seventy nine (95.2%) of 83 strains were resistant to one or more drugs tested. The most frequent resistance patterns were SaSm (14.5%) and followed by SaSmTc(12%), SaSmTcKm(8.4%) SaTc (8.4%) and SaSmKm (7.2%) ; total 19 different patterns were noted. Thirty two (40.5%) of 79 resistant strains were transferred all of a part of their resistance to Escherichia coli ML 1410. The frequency of transferable resistance was high in Am (100%) and Cm (80%) while low in Tc (38.1%), Sa (18.2%), Sm (17.9%) and Km (4.5%).

  • PDF

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF