• Title/Summary/Keyword: Isolated rat heart

Search Result 173, Processing Time 0.026 seconds

Cloning of a Glutathione S-Transferase Decreasing During Differentiation of HL60 Cell Line (HL6O 세포주의 분화 시 감소 특성을 보이는 Glutathione S-Transferase의 클로닝)

  • Kim Jae Chul;Park In Kyu;Lee Kyu Bo;Sohn Sang Kyun;Kim Moo Kyu;Kim Jung Chul
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.151-157
    • /
    • 1999
  • Purpose : By sequencing the Erpressed Sequence Tags of human 걸ermal papilla CDNA library, we identified a clone named K872 of which the expression decreased during differentiation of HL6O cell line. Materials and Methods : K872 plasmid DNA was isolated according to QIA plasmid extraction kit (Qiagen GmbH, Germany). The nucleotide sequencing was performed by Sanger's method with K872 plasmid DNA. The most updated GenBank EMBL necleic acid banks were searched through the internet by using BLAST (Basic Local Alignment Search Tools) program. Nothern bots were performed using RNA isolated from various human tissues and cancer cell lines. The gene expression of the fusion protein was achieved by His-Patch Thiofusicn expression system and the protein product was identified on SDS-PAGE. Results : K872 clone is 1006 nucleotides long, and has a coding region of 675 nucleotides and a 3' non-coding region of 280 nucleotides. The presumed open reading frame starting at the 5' terminus of K872 encodes 226 amino acids, including the initiation methionine residue. The amino acid sequence deduced from the open reading frame of K872 shares $70\%$, identity with that of rat glutathione 5-transferase kappa 1 (rGSTKl). The transcripts were expressed in a variety of human tissues and cancer cells. The levels of transcript were relatively high in those tissues such as heart, skeletal muscle, and peripheral blood leukocyte. It is noteworthy that K872 was found to be abundantly expressed in coloreetal cancer and melanoma cell lines. Conclusion : Homology search result suggests that K872 clone is the human homolog of the rGSTK1 which is known to be involved in the resistance of cytotoxic therapy. We propose that meticulous functional analysis should be followed to confirm that.

  • PDF

Transformation of Adult Mesenchymal Stem Cells into Cardiomyocytes with 5-azacytidine: Isolated from the Adipose Tissues of Rat (성체 백서의 지방조직에서 추출한 중간엽 줄기세포의 5-azacytidine을 이용한 심근세포 분화 유도)

  • Choe Ju-Won;Kim Yong-In;Oh Tae-Yun;Cho Dai-Yoon;Sohn Dong-Suep;Lee Tae-Jin
    • Journal of Chest Surgery
    • /
    • v.39 no.7 s.264
    • /
    • pp.511-519
    • /
    • 2006
  • Background: Loss of cardiomyocytes in the myocardial infarction leads to regional contractile dysfunction, and necrotized cardiomyocytes in infracted ventricular tissues are progressively replaced by fibroblasts forming scar tissue. Although cardiomyoplasty, or implantation of ventricular assist device or artificial heart was tried in refractory heart failure, the cardiac transplantation was the only therapeutic modality because these other therapeutic strategies were not permanent. Cell transplantation is tried instead of cardiac transplantation, especially bone marrow is the most popular donated organ. But because bone marrow aspiration procedure is invasive and painful, and it had the fewer amounts of cellular population, the adipose tissue is recommended for harvesting of mesenchymal stem cells. Material and Method: After adipose tissues were extracted from abdominal subcutaneous adipose tissue and intra-abdominal adipose tissue individually, the cellular components were obtained by same method. These cellular components were tried to transformation with the various titers of 5-azacytidine to descript the appropriate concentration of 5-azacytidine and possibility of transformation ability of adipose tissue. Group 1 is abdominal subcutaneous adipose tissue and Group 2 is intra-abdominal adipose tissue-retroperitoneal adipose tissue and omentum. Cellular components were extracted by collagenase and $NH_4Cl$ et al, and these components were cultured by non-induction media - DMEM media containing 10% FBS and inducted by none, $3{\mu}mol/L,\;6{\mu}mol/L,\;and\;9{\mu}mol/L$ 5-azacytidine after the 1st and 2nd subculture. After 4 weeks incubation, tile cell blocks were made, immunostaining was done with the antibodies of CD34, heavy myosin chain, troponin T, and SMA. Result: Immunostaining of the transformed cells for troponin T was positive in the $6{\mu}mol/L\;&\;9{\mu}mol/L$ 5-azacytidine of Group 1 & 2, but CD34 and heavy myosin chain antibodies were negative and SMA antibody was positive in the $3{\mu}mol/L\;&\;6{\mu}mol/L$ 5-azacytidne of Group 2. Conclusion: These observations confirm that adult mesenchymal stem cells isolated from the abdominal subcutaneous adipose tissues and intra-abdominal adipose tissues can be chemically transformed into cardiomyocytes. This can potentially be a source of autologous cells for myocardial repair.

Taurine exerts neuroprotective effects via anti-apoptosis in hypoxic-ischemic brain injury in neonatal rats (신생 흰쥐의 저산소성 허혈성 뇌손상에서 항세포사멸사를 통한 taurine의 신경보호 효과)

  • Jeong, Ji Eun;Kim, Tae Yeol;Park, Hye Jin;Lee, Kye Hyang;Lee, Kyung Hoon;Choi, Eun Jin;Kim, Jin Kyung;Chung, Hai Lee;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.12
    • /
    • pp.1337-1347
    • /
    • 2009
  • Purpose:Taurine (2-aminoethanesulfonic acid) is a simple sulfur-containing amino acid. It is abundantly present in tissues such as brain, retina, heart, and skeletal muscles. Current studies have demonstrated the neuroprotective effects of taurine, but limited data are available for such effects during neonatal period. The aim of this study was to determine whether taurine could reduce hypoxic-ischemic (HI) cerebral injury via anti-apoptosis mechanism. Methods:Embryonic cortical neurons isolated from Sprague-Dawley (SD) rats at 18 days gestation were cultured in vitro. The cells were divided into hypoxia group, taurine-treated group before hypoxic insult, and taurine-treated group after HI insult. In the in vivo model, left carotid artery ligation was performed in 7-day-old SD rat pups. The pups were exposed to hypoxia, administered an injection of 30 mg/kg of taurine, and killed at 1 day, 3 days, 1 week, 2 weeks, and 4 weeks after the hypoxic insult. We compared the expressions of Bcl-2, Bax, and caspase-3 among the 3 groups by using real- time polymerase chain reaction (PCR) and western blotting. Results:The cells in the taurine-treated group before hypoxic insult, although similar in appearance to those in the normoxia group, were lesser in number. In the taurine-treated group, Bcl-2 expression increased, whereas Bax and caspase-3 expressions reduced. Conclusion:Taurine exerts neuroprotective effects onperinatal HI brain injury due to its anti-apoptotic effect. The neuroprotective effect was maximal at 1-2 weeks after the hypoxic injury.