• Title/Summary/Keyword: Isohyetal method

Search Result 13, Processing Time 0.022 seconds

A Comparative Analysis of the Accuracy of Areal Precipitation According to the Rainfall Analysis Method of Mountainous Streams

  • Kang, Bo-Seong;Yang, Sung-Kee;Kang, Myung-Soo
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.841-849
    • /
    • 2019
  • The purpose of this study was to evaluate the method of estimating the areal precipitation reflecting the altitude of the mountainous terrain on Jeju Island by comparing and analyzing the areal precipitation using the Thiessen polygon method and the isohyetal method in mountainous streams. In terms of constructing the Thiessen polygon network, rainfall errors occurred in 94.5% and 45.8% of the Thiessen area ratio of the Jeju and Ara stations, respectively. This resulted in large areal precipitation and errors using the isohyetal method at altitudes below 600 m in the target watershed. In contrast, there were small errors in the highlands. Rainfall errors occurred in 18.91% of the Thiessen area ratio of Eorimok, 2.41% of Witseoreum, and 2.84% of Azalea Field because of the altitudinal influence of stations located in the highlands at altitudes above 600 m. Based on the areal precipitation estimation using the Thiessen polygon method, it was considered to be partially applicable to streams on Jeju Island depending on the altitude. However, the method is not suitable for mountainous streams such as the streams on Jeju Island because errors occur with altitude. Therefore, the isohyetal method is considered to be more suitable as it considers the locations of the rainfall stations and the orographic effect and because there are no errors with altitude.

A Study on the Evaluation of Areal Precipitation in Korea. (한국 면적 강우량 산정에 관한 연구<월별, 계절별 및 연간우량 중심으로>)

  • 정문교;심재설
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.35-52
    • /
    • 1981
  • This study is to evaluate the areal precipitation from the basic data groups of monthly, seasonal, and annual rainfalls over all ma in stations in Korea. The evaluating pocesses are performed through the point and regional frequency analysis from the basic data. The basic data groups are divided into two periods-the first(1916-1944) and the second (1960-1979)-which are compared with each other. In the point frequecny analysis, the variable transformation method is applied to the best fitting distribution, and the normal fittings are established by using the Chisquare test method. In the regional frequency analysis, the geomorphologic factors and hydrometeorological factors are taken into consideration when dividing into five zones and Thiessen method and the Isohyetal method are applied. The results of this study are as follows: 1)The areal precipitation values of the first period are about 70-80mm less than that of the second period for the whole of Korea. Therefore, a new precipitation value of 1180mm is considered more suitable than the value of 1159mm, which has been up till now. 2)As the annual areal precipitiation values areevaluated over the five divide zones, it tis noticed that the difference between the values of the first period and the second is the largest in spring (to the extent of 5 times that in the other seasonas). Thereform it is considered that this result is necessary for the establishment of a timely insurance plan for the water resources. 3)The application of the Isohyetal method through the division of Korea into five zones is considered to be a reasonable procedure in the analysis of areal precipitation.

  • PDF

DAD Analysis on Storm Movement (호우이동을 고려한 DAD 분석방법)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.437-448
    • /
    • 2004
  • The traditional fixed areal DAD(rainfall Depth-Area-Duration) method, generally quoted in most hydrology texts, is a simple and useful procedure when watersheds are small and storm movement is not an important factor of consideration. However, it is difficult to obtain satisfactory results for the more apparent forms of storm movement such as typhoons, or for large watershed. In the latter case, especially the margin of error for the areal average rainfall increases proportionally to the area of study, causing biased result. To overcome these limitations, this study focuses on the storm-centered DAD analysis(moving area DAD method) developed and programmed by the isohyetal concept to obtain accurate and objective results. By comparing and analyzing the observed rainfall rates through both method, it was proved that the currently Proposed method more accurately reflected the average rainfall rate. In short, through this new method, approximately 130 storm events nationwide from 1969 to 1999 was analyzed and compared with the fixed areal method results.

A Programming of Hydrologic Analysis Procedure for the Probable Isohyetal Chart in Korea (한국 확률강우량도 작성을 위한 수문해석방법 개발)

  • 이원환
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 1987
  • The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.

  • PDF

Effect of Areal Mean Rainfall Estimation Technique and Rainfall-Runoff Models on Flood Simulation in Samcheok Osipcheon(Riv.) Basin (면적 강우량 산정 기법과 강우-유출 모형이 삼척오십천 유역의 홍수 모의에 미치는 영향)

  • Lee, Hyeonji;Shin, Youngsub;Kang, Dongho;Kim, Byungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.775-784
    • /
    • 2023
  • In terms of flood management, it is necessary to analyze quantitative rainfall and runoff from a spatial and temporal perspective and to analyze runoff for heavy rainfall events that are concentrated within a short period of time. The simulation and analysis results of rainfall-runoff models vary depending on the type and input data. In particular, rainfall data is an important factor, so calculating areal mean rainfall is very important. In this study, the areal mean rainfall of the Samcheok Osipcheon(Riv.) watersheds located in the mountainous terrain was calculated using the Arithmetic Mean Method, Thiessen's Weighting Method, and the Isohyetal Method, and the rainfall-runoff results were compared by applying the distributional model S-RAT and the lumped model HEC-HMS. The results of the temporal transferability study showed that the combination of the distributional model and the Isohyetal Method had the best statistical performance with MAE of 64.62 m3/s, RMSE of 82.47 m3/s, and R2 and NSE of 0.9383 and 0.8547, respectively. It is considered that this study was properly analyzed because the peak flood volume occurrence time of the observed and simulated flows is within 1 hour. Therefore, the results of this study can be used for frequency analysis in the future, which can be used to improve the accuracy of simulating peak flood volume and peak flood occurrence time in mountainous watersheds with steep slopes.

Rainfall-Runoff Analysis of a Rural Watershed (농촌유역의 강우-유출분석)

  • Kim, Ji-Yong;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.93-98
    • /
    • 2001
  • This study was performed to analyse the rainfall and the rainfall-runoff characteristics of a rural watershed. The Sangwha basin($105.9km^{2}$) in the Geum river system was selected for this study. The arithmetic mean method, the Thiessen's weighing method, and the isohyetal method were used to analyse areal rainfall distribution and the Huff's quartile method was used to analyse temporal rainfall distribution. In addition, daily runoff analyses were peformed using the DAWAST and tank model. In the model calibration, the data from June through November, 1999 were used. In the model calibration, the observed runoff depth was 513.7mm and runoff rate was 45.2%, and the DAWAST model simulated runoff depth was 608.6mm and runoff rate was 53.5%, and the tank model runoff depth was 596.5mm and runoff rate was 52.5%, respectively. In the model test, the data from June through November, 2000 were used. In the model test, the observed runoff depth was 1032.3mm and runoff rate was 72.5%, and the DAWAST model simulated runoff depth was 871.6mm and runoff rate was 61.3%, and the tank model runoff depth was 825.4mm and runoff rate was 58%, respectively. The DAWAST and tank model's $R^{2}$ and RMSE were 0.85, 3.61mm, and 0.85, 2.77mm in 1999, and 0.83, 5.73mm, and 0.87, 5.39mm in 2000, respectively. Both models predicted low flow runoff better than flood runoff.

  • PDF

A Study on the Estimation of Probable Maximum Precipitation Frequency Factor in Korea (우리나라의 최대하강수량 빈도계수 산정에 관한 연구)

  • No, Jae-Sik;Lee, Won-Hwan;Lee, Gil-Chun
    • Water for future
    • /
    • v.19 no.3
    • /
    • pp.249-258
    • /
    • 1986
  • The purpose of this study is to estimate the PMP frequency factor for evaluation of the Probable Maximum Precipitation (PMP) in Korea. The value of PMP is the criterion of the determination of design rainfall in Planning and designing hydraulic structures, and water resources management. To obtain the object, 12 key stations were selected in which have the automatic rain0recording paper of 20 years, and the annual maximum rainfall values were calculated for each 7 durations(10 min., 1, 2, 4, 6, 12, 24 hr.). The statistics(mean, standard deviation)were estimated, and diagram which shows the relationship between mean annual maximum rainfall($$) and frequency factor for each durations were drawn. PMP was estimated by statistical method using the PMP frequency factor obtained from the diagram and statistics($$, Sn). The PMP-Duration Equation was derived from the envelope curve in order to obtain the PMP for an arbitrary duration. The isohyetal map of 24 hours PMP and PMP. DAD curve for the whole of Korea were drawn in accordance with the point PMP values.

  • PDF

Development of Rainfall - Delayed Response Model for the Calculation of Baseflow Proportion (기저유출량추정을 위한 강우 지연반응모형 개발)

  • 홍종운;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.31-43
    • /
    • 1988
  • The Purpose of this study is to develop the rainfall-delayed response model (RDR Model) which influences the baseflow proportion of rivers as a result of the antecedent precipitation of the previous several months. The assesment of accurate baseflows in the rivers is one of the most important elements for the planning of seasonal water supply for agriculture, water resources development, hydrological studies for the availability of water and design criteria for various irrigation facilities. The Palukan river gauging site which is located in the Pulukan catchment on Bali Island, Indonesia was selected to develop this model. The basic data which has been used comprises the available historic flow records at 19 hydrologic gauging stations and 77 rainfall stations on Bali Island in the study. The methology adopted for the derivation of the RDR model was the water balance equation which is commonly used for any natural catcbment ie.P=R+(catchment losses) -R+(ET+DP+DSM+DGW). The catchment losses consist of evapotranspiration, deep percolation. change in soil moisture, and change in groundwater storage. The catchment areal rainfall has been generated by applying the combination method of Thiessen polygon and Isohyetal lines in the studies. The results obtained from the studies may be summarized as follows ; 1. The rainfall-runoff relationship derived from the water balance equation is as shown below, assuming a relationship of the form Y=AX+B. Finally these two equations for the annual runoff were derived ; ARO$_1$=0.855 ARF-821, ARF>=l,400mm ARO$_2$=0.290ARF- 33, ARF<1,400mm 2. It was found that the correction of observed precipitation by a combination of Thiessen polygons and Isohyetal lines gave good correlation. 3. Analysis of historic flow data and rainfall, shows that surface runoff and base flow are 52 % and 48% (equivalent to 59.4 mm) of the annual runoff, respectively. 4. Among the eight trial RDR models run, Model C provided the correlation with historic flow data. The number of months over which baseflow is distributed and the relative proportions of rainfall contributing in each month, were estimated by performing several trial runs using data for the Pulukan catchment These resulted in a value for N of 4 months with contributing proportions of 0.45, 0.50, 0.03 and 0.02. Thus the baseflow in any month is given by : P$_1$(n) =0.45 P(n) +0.50 P(n-I ) +0.03 P(n-$_2$) +0.02 P(n-$_3$) 5. The RDR model test gave estimated flows within +3.4 % and -1.0 % of the observed flows. 6. In the case of 3 consecutive no rain months, it was verified that 2.8 % of the dependable annual flow will be carried over the following year and 5.8 % of the potential annual baseflow will be transfered to the next year as a result of the rainfall-delayed response. The results of evaluating the pefformance of the RDR Model was generally satisfactory.

  • PDF

Runoff Analysis Based on Rainfall Estimation Using Weather Radar (기상레이더 강우량 산정법을 이용한 유출해석)

  • Kim, Jin Geuk;Ahn, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.7-14
    • /
    • 2006
  • The radar relationship was estimated for the selected rainfall event at Yeongchun station within Chungjudam basin where the discharge record was the range of from 1,000 CMS to 9,000 CMS. By calibrating the rainfall coefficient parameter estimated by radar relationship in small hydrology basin, rainfall with the topography properties was calculated. Three different rainfall estimation methods were compared:(1) radar relationship method (2) Thiessen method (3) Isohyetal method (4) Inverse distance method. Basin model was built by applying HEC-GeoHMS which uses digital elevation model to extract hydrological characteristic and generate river network. The proposed basin model was used as an input to HEC-HMS to build a runoff model. The runoff estimation model applying radar data showed the good result. It is proposed that the radar data would produce more rapid and accurate runoff forecasting especially in the case of the partially concentrated rainfall due to the atmospheric change. The proposed radar relationship could efficiently estimate the rainfall on the study area(Chungjudam basin).

Estimation of Area Average Rainfall Amount and Its Error (면적평균강우량의 추정 및 추정오차)

  • Yu, Cheol-Sang;Jeong, Gwang-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.317-326
    • /
    • 2001
  • This study evaluates the errors involved in the area average rainfall amounts estimated by the arithmetic mean method, the Thiessen's weighting method, and the optimal weighting method from the estimation theory. This study was applied to the upstream part of Nam-Han river basin (upper part of Youngwal) and the following results could be obtained. First, in case the raingauges are located evenly over the basin, no obvious difference can be found in the area average rainfall amounts from the arithmetic mean method or from the Thiessen's weighting method. However, as these two methods cannot consider the spatial variability of rainfall, the estimation error could be higher when the spatial variability of rainfall is high. In our application the estimation error from the arithmetic mean method or the Thiessen's weighting method was also found to be higher than that from the method from the information theory, which considers the spatial variability of rainfall. Thus, we could conclude that for the rainy season of Korea or for the mountain area when and where the spatial variability of rainfall is high, a proper method of considering the spatial variability of rainfall should be used regardless of the basin size. The isohyetal method generally used for the large basins or the optimal weighting method from the estimation theory used in this study could be good alternatives for this case.

  • PDF