• Title/Summary/Keyword: Isogeometric Analysis (IGA)

Search Result 15, Processing Time 0.016 seconds

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

Isogeometric Analysis of Lattice Structures Having Compression-Twist Coupled Deformation (압축-비틀림이 결합된 격자구조의 아이소-지오메트릭 해석)

  • Kang, Se-Hyeon;Choi, Myung-Jin;Oh, Myung-Hoon;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.287-292
    • /
    • 2021
  • We utilized the isogeometric analysis (IGA) method that uses NURBS basis functions in CAD systems, to account for the geometric exactness of a geometrically exact beam deformation, on a new type of metamaterial, twist-translation coupled structure showing a large twist angle. A two-dimensional unit cell structure was embedded in a cylindrical wall, using free-form deformation and an appropriate interpolation scheme. A parametric study on the effects of the dimensions of the cylinder and the number of cells, on the twisting angle was performed. Furthermore, the mechanism of the twist-translation coupled metamaterial was explored through numerical examples.

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.

H-refined Shape Design Sensitivity Analysis of Elastic Structures using Multi-Resolution Approach (다중 조밀도를 이용한 탄성 구조의 h-세분화 아이소-지오메트릭 설계민감도 해석)

  • Lee, Taeho;Yoon, Minho;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.155-163
    • /
    • 2018
  • One of the major disadvantages of isogeometric analysis(IGA) is that local refinement is nearly impossible in a conventional manner because of the tensor product nature in NURBS. In this research, we investigate a local refinement scheme for isogeometric analysis, named multi-resolution approach where different resolutions are employed at each subdomain, using h-refinement relation to endow displacement compatibility on an interface of subdomains. Then, we develop shape sensitivity analysis possessing same compatibility condition as in the analysis. Numerical examples are shown to demonstrate the computational efficiency of the method in analysis especially stress concentration problem and accurate sensitivity results which is also compatible on the interface.

Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory

  • Soleimani, Ahmad;Dastani, Kia;Hadi, Amin;Naei, Mohamad Hasan
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.517-534
    • /
    • 2019
  • In this paper, the effects of inevitable out-of-plane defects on the postbuckling behavior of single-layered graphene sheets (SLGSs) under in-plane loadings are investigated based on nonlocal first order shear deformation theory (FSDT) and von-Karman nonlinear model. A generic imperfection function, which takes the form of the products of hyperbolic and trigonometric functions, is employed to model out-of-plane defects as initial geometrical imperfections of SLGSs. Nonlinear equilibrium equations are derived from the principle of virtual work and variational formulation. The postbuckling equilibrium paths of imperfect graphene sheets (GSs) are presented by solving the governing equations via isogeometric analysis (IGA) and Newton-Raphson iterative method. Finally, the sensitivity of the postbuckling behavior of GS to shape, amplitude, extension on the surface, and location of initial imperfection is studied. Results showed that the small scale and initial imperfection effects on the postbuckling behavior of defective SLGS are important and cannot be ignored.