• 제목/요약/키워드: Isoflavone Synthase

검색결과 16건 처리시간 0.023초

Production of Genistein from Naringenin Using Escherichia coli Containing Isoflavone Synthase-Cytochrome P450 Reductase Fusion Protein

  • Kim, Dae-Hwan;Kim, Bong-Gyu;Jung, Na-Ri;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1612-1616
    • /
    • 2009
  • Isoflavonoids are a class of phytoestrogens. Isoflavonone synthase (IFS) is responsible for the conversion of naringenin to genistein. IFS is a cytochrome P450 (CYP), and requires cytochrome P450 reductase (CPR) for its activity. Additionally, the majority of cytochrome P450s harbor a membrane binding domain, making them difficult to express in Escherichia coli. In order to resolve these issues, we constructed an inframe fusion of the IFS from red clover (RCIFS) and CPR from rice (RCPR) after removing the membrane binding domain from RCIFS and RCPR. The resultant fusion gene, RCIFS-RCPR, was expressed in E. coli. The conversion of naringenin into genistein was confirmed using this E. coli transformant. Following the optimization of the medium and cell density for biotransformation, $60\;{\mu}M$ of genistein could be generated from $80\;{\mu}M$ of naringenin. This fusion protein approach may be applicable to the expression of other P450s in E. coli.

신팔달콩 유래 IFS (isoflavone synthase)유전자 클로닝 및 기능 규명 (Cloning and Characterization of Soybean IFS (Isoflavone Synthase) Genes from Korean Cultivar, Sinpaldalkong)

  • Park, Hayng-Mi;Shin, Sang-Hyun;Ko, Jong-Min;Yi, Gi-Hwan;Nam, Min-Hee;Chung, Young-Soo;Chung, Won-Bok;Lee, Jai-Heon;Park, Seong-Whan
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.38-44
    • /
    • 2004
  • 이소플라본의 함량이 매우 높은 것으로 알려진 국내 콩품종 신팔달로부터 2개의 유전자 IFS1 (SinIFS1)과 IFS2(SinIFS2)가 클로닝되었다. 유전자의 염기서열을 밝힌 후, 기존에 알려진 콩과의 다른 IFS 유전자들과 유전자 염기서열의 유사성을 비교 분석하였다. 유전자 SinIFS1은 전체 1,828bp의 nucleotide와 521개의 아미노산으로 이루어져 있었고 SinIFS2의 경우, 1912bp의 nucleotide와 521의 아미노산으로 이루어져 있었다. 두 유전자 모두 cytochrome P45O superfamily의 일원이었고, 상응하는 conserve된 motif들을 가지고 있었다. 콩과의 다른 식물에서 클로닝된 IFS들과의 염기서열비교에서는 매우 높은 염기서열 유사성(98% 이상)이 관측되었다. 유전자의 발현과 유발에 관한 노던분석 실험 결과, 무처리구로 사용한 암처리보다 모두 유발된 유전자의 발현을 나타났는데, 특히 곰팡이 elicitor 처리구의 경우, 무처리보다 6배 이상의 유전자 유발을 보였다. 그 다음으로는 자외선 처리가 높은 유전자 발현 유발효과를 나타내었고, 그 다음으로 저온과 명처리순으로 유발효과를 나타내었다.

고지방식이를 섭취하는 흰 쥐에서 제니스테인 보충이 지방간 및 지질대사에 미치는 영향 (Effects of Genistein Supplementation on Fatty Liver and Lipid Metabolism in Rats Fed High Fat Diet)

  • 이선혜;김미현;박미나;이연숙
    • Journal of Nutrition and Health
    • /
    • 제40권8호
    • /
    • pp.693-700
    • /
    • 2007
  • This study was performed to investigate the effects of genistein, a kind of soy isoflavones, on fatty liver and lipid metabolism in rats fed high fat diet. Twenty four male Sprague-Dawley rats were divided into four groups by dietary fat and genistein contents then raised for six weeks. The rats(n=6/group) were fed normal fat diet(NOR), high fat diet (HF), high fat with 0.1% genistein(HF+0.1%G) or high fat with 0.2% genistein(HF+0.2%G). Hepatic total lipid, triglyceride, total cholesterol and Serum GPT, as a marker for fatty liver, were significantly increased by high fat diet. Also, serum total lipid, triglyceride, total cholesterol, glucose and insulin concentration, hepatic lipogenic enzyme (fatty acid synthase and malic enzyme) activities were significantly increased by high fat diet. However, hepatic total lipid, triglyceride, total cholesterol and Serum GPT were significantly decreased by genistein intake. Also, genistein supplementation decreased serum total lipid, triglyceride, glucose and insulin concentration, hepatic lipogenic enzyme (fatty acid synthase and malic enzyme) activities. There were no differences by genistein level except for serum insulin. These results suggest that fatty liver induced by high fat diet was caused by increased serum lipid profiles and hepatic lipogenesis, whereas, genistein may be useful in inhibiting of fatty liver by reducing serum lipid profiles and hepatic lipogenesis.

Direct Action of Genistein on the Hypothalamic Neuronal Circuits in Female Rats

  • Lee, Woo-Cheol;Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권1호
    • /
    • pp.35-41
    • /
    • 2010
  • Mammalian reproduction is regulated by a feedback circuit of the key reproductive hormones such as GnRH, gonadotropin and sex steroids on the hypothalamic-pituitary-gonadal axis. In particular, the onset of female puberty is triggered by gain of a pulsatile pattern and increment of GnRH secretion from hypothalamus. Previous studies including our own clearly demonstrated that genistein (GS), a phytoestrogenic isoflavone, altered the timing of puberty onset in female rats. However, the brain-specific actions of GS in female rats has not been explored yet. The present study was performed to examine the changes in the activities of GnRH neurons and their neural circuits by GS in female rats. Concerning the drug delivery route, intracerebroventricular (ICV) injection technique was employed to eliminate the unwanted actions on the extrabrain tissues which can be occurred if the testing drug is systemically administered. Adult female rats (PND 100, 210-230 g BW) were anaesthetized, treated with single dose of GS ($3.4{\mu}g$/animal), and sacrificed at 3 hrs post-injection. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). ICV infusion of GS significantly raised the transcriptional activities of enhanced at puberty1 (EAP-1, p<0.05), glutamic acid decarboxylase (GAD67, p<0.01) which are known to modulate GnRH secretion in the hypothalamus. However, GS infusion could not change the mRNA level of nitric oxide synthase 2 (NOS-2). GS administration significantly increased the mRNA levels of KiSS-1 (p<0.001), GPR54 (p<0.001), and GnRH (p<0.01) in the hypothalami, but decreased the mRNA levels of LH-$\beta$ (p<0.01) and FSH-$\beta$ (p<0.05) in the pituitaries. Taken together, the present study indicated that the acute exposure to GS could directly activate the hypothalamic GnRH modulating system, suggesting the GS's disrupting effects such as the early onset of puberty in immature female rats might be derived from premature activation of key reproduction related genes in hypothalamus-pituitary neuroendocrine circuit.

칼슘과 제니스테인 섭취가 고지방식이로 유도된 비만 모델 마우스의 체지방과 지질대사에 미치는 영향 (Effects of Calcium and Genistein on Body Fat and Lipid Metabolism in High Fat-induced Obese Mice)

  • 김미현;김설희;박현우;김완기;이연숙
    • Journal of Nutrition and Health
    • /
    • 제39권8호
    • /
    • pp.733-741
    • /
    • 2006
  • The study was conducted to investigate the effects of dietary calcium and soy isoflavone on body fat and lipid metabolism in high fat-induced obesity. Four week old female C57/BL6J mice, known as a good model of diet-induced obesity, were fed low Ca and high fat diet for 6 weeks. After induced obesity, mice were divided into six groups according to diets varying calcium contents (0.1 or 1.5%) and genistein contents (0 or 500 or 1,000 ppm). Body weight, fat pad (perirenal fat and parameterial fat), adipocyte size, serum total lipid and total cholesterol were significantly decreased by both high Ca intake and genistein supplementation. However, the effect of genistein supplementation showed in low Ca-fed groups. Serum LDL-cholesterol and TG were significantly decreased by high Ca intake and genistein supplementation, respectively. In liver, lipogenic enzymes (fatty acid synthase and malic enzyme) activity and TG were significantly decreased by both high Ca intake and genistein supplementation. This inhibitory effect of genistein on lipogenic enzymes showed in low Ca-fed groups. But liver total cholesterol and total lipid were significantly decreased by high Ca intake and genistein supplementation, respectively. Fecal excretion of total lipid, total cholesterol and TG were significantly increased by high Ca intake, not by genistein supplementation. In conclusion, high calcium intake and genistein supplement may be beneficial for suppression of obesity through direct anti-adipogenesis by decreasing fat weight and size and indirect anti-lipo-genesis by inhibiting lipogenic enzymes activity and improving lipid profile.

Characterization of a Novel Necrotic Response of Glycine max Line 'PI96188' to Xanthomonas axonopodis pv. glycines

  • Han, Sang-Wook;Choi, Min-Seon;Lee, Suk-Ha;Hwang, Duk-Ju;Hwang, Byung-Kook;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.193-202
    • /
    • 2007
  • Typical susceptible symptoms of the bacterial pustule disease caused by Xanthomonas axonopodis pv. glycines are pustule and chlorotic haloes that usually occur in leaves of Glycine max plants. The soybean genotype 'PI96188' showed an atypical response to all tested races X. axonopodis pv. glycines, accompanied with necrosis without chlorotic haloes on the underside of the necrotic symptoms. X. axonopodis pv. glycines 8ra grew to levels from 10 to 100 fold lower on PI96188 than on susceptible cultivar Jinjoo1, but 10-fold higher than on the resistant cultivar CNS. The chlorophyll content in PI96188 leaves remained unchanged until 12 days after bacterial infection. Ultrastructural observation showed that the infected leaf cells of PI96188 had intact normal chloroplasts compared to those of the susceptible cultivar Jinjoo1. Chloroplast degradation or the absence of chloroplasts in cells of the infected tissues was observed in Jinjoo1. Senescence-related ACS7 gene was significantly induced in PI96188 compared to those in Jinjoo1 at 2 days after inoculation. While photosynthesis-related rbcS gene showed the dramatic change in Jinjoo1, this gene was constitutively expressed in PI96188. However, expression of the defense-related genes, such as peroxidase and isoflavone synthase in the infected PI96188 leaves was similar to that in Jinjoo1. Together, these results suggest that the novel necrotic symptom in PI96188 is a kind of resistant response different from a typical hypersensitive response in the resistant genotypes.