• Title/Summary/Keyword: Isobutyl-orthosilicate

Search Result 2, Processing Time 0.018 seconds

Evaluation of Penetrating and Reinforcing Agent for Preventing Deterioration of Concrete (표면 침투 보강제에 의한 콘크리트 열화 방지 성능 평가)

  • Cho, Myung-Sug;No, Jae-Myoung;Song, Young-Chul;Kim, Do-Gyum
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.475-482
    • /
    • 2007
  • The property and applicability of the organic-inorganic synthesized penetrating and reinforcing agent, which is developed in order to improve durability of concrete structures and prevent deterioration that may occur as service years increased, are researched with experimental works. TEOS (tetra-ethoxyorthosilicate) and acrylate monomer are synthesized by the solution polycondensation method in order to formulate silicate with sol-gel process and improve durability of concrete. Additional substances such as isobutyl-orthosilicate is supplemented in order to improve the performance of the agent. After the developed organic-inorganic penetrating reinforcing agent penetrates, a flexible impact alleviating layer is formed with organic monomers as well as the agent strengthens concrete by filling up the internal pore of concrete with stable compounds after penetration. Penetrating and reinforcing agent can be applied as an effective life management method because it makes concrete more durable against the aging factors, such as chloride ion, carbonation, freezing-thawing, and compound aging.

EVALUATION OF A PENETRATION-REINFORCING AGENT TO PREVENT THE AGING OF CONCRETE

  • Cho, Myung-Sug;Noh, Jea-Myoung;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1127-1134
    • /
    • 2009
  • Concrete has three major properties after a penetration-reinforcing agent is applied on its surface. First, the durability is improved by the sol-gel process of synthesized material from the polycondensation of TEOS (tetra-ethoxyorthosilicate) and acrylate monomer. Second, the capability to absorb impact energy is reinforced through the formation of a soft and flexible layer of organic monomers by Tea (Tetra Ethyl Amin). Third, the capability to prevent deterioration is enhanced by adding isobutyl-orthosilicate and alcohol. The performance and application of an agent developed through the synthesis of organic and inorganic material in an effort to prevent concrete from deterioration and improve the durability of concrete structures were verified in diverse experiments. The results of these experiments showed that the application of the proposed penetration-reinforcing agent has the effect of increasing the compressive strength by filling up the internal pores of concrete with physically and chemically stable compounds after penetrating the concrete. It also improves the durability against the deterioration factors such as salt water damage, carbonation, freezing and thawing, and compound deterioration. Therefore, it is confirmed that the penetration-reinforcing agent is a useful substance for the management and repair of concrete structures.