• Title/Summary/Keyword: Iso-surface Rendering

Search Result 6, Processing Time 0.019 seconds

Algorithms for iso-surface representation of res from finite element analysis of stress (유한요소법에 의한 응력 해석 결과의 등가면 표시 알고리즘)

  • Lee, Jae Young;Lee, Young-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.85-97
    • /
    • 1997
  • This study is intended to propose methods of iso-surfaces representation in visualizing the stress distribution in 3-dimensional solids computed by finite element method, and to develop efficient algorithms related to iso-surfaces, and also to exploit the practical application to various data visualizations. This paper suggests practical methods of creating and rendering iso-surfaces, and methods of surface smoothing which removes local irregularity on the surface. Also devised in this study are various methods of rendering stress distribution with the aid of iso-surfaces. Their effectiveness and usefulness have been tested and verified through actual implementaion of a finite element analysis software and case studies using the software.

  • PDF

Segmentation and 3D Visualization of Medical Image : An Overview

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • In this paper, an overview of segmentation and 3D visualization methods are presented. Commonly, the two kinds of methods are used to visualize organs and vessels into 3D from medical images such as CT(A) and MRI - Direct Volume Rendering (DVR) and Iso-surface Rendering (IR). DVR can be applied directly to a volume. It directly penetrates through the volume while it determines which voxels are visualizedbased on a transfer function. On the other hand, IR requires a series of processes such as segmentation, polygonization and visualization. To extract a region of interest (ROI) from the medical volume image via the segmentation, some regions of an object and a background are required, which are typically obtained from the user. To visualize the extracted regions, the boundary points of the regions should be polygonized. In other words, the boundary surface composed of polygons such as a triangle and a rectangle should be required to visualize the regions into 3D because illumination effects, which makes the object shaded and seen in 3D, cannot be applied directly to the points.

Development of 3D Visualization Technology for Meteorological Data Using IDL (IDL을 이용한 기상자료 3 차원 가시화 기술개발 연구)

  • Joh Min-su;Yun Ja-Young;Seo In-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.77-80
    • /
    • 2002
  • The recent 3D visualization such as volume rendering, iso-surface rendering or stream line visualization gives more understanding about structures or distribution of data in a space and, moreover, the real-time rendering of a scene enables the animation of time-series data. Because the meteorological data is frequently formed as multi-variables, 3-dimensional and time-series data, the spatial analysis, time-series analysis, vector display, and animation techniques can do important roles to get more understanding about data. In this research, our aim is to develop the 3-dimensional visualization techniques for meteorological data in the PC environment by using IDL. The visualization technology from :his research will be used as basic technology not only for the deeper understanding and the more exact prediction about meteorological environments but also for the scientific and spatial data visualization research in any field from which three-dimensional data comes out such as oceanography, earth science, or aeronautical engineering.

  • PDF

Image Space Occlusion Shading Model for Iso-surface Volume Rendering (등위면 볼륨렌더링을 위한 이미지 공간 폐색 쉐이딩 모델)

  • Kim, Seokyeon;You, Sangbong;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The volume rendering has become an important technique in many applications along with hardware development. Understanding and perception of volume visualization benefit from visual cues which are available from shading. Better visual cues can be obtained from global illumination models but it's huge amount of computation and extra GPU memory need cause a lack of interactivity. In this paper, in order to improve visual cues on volume rendering, we propose an image space occlusion shading model which requires no additional resources.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Scalable Graphics Algorithms (스케일러블 그래픽스 알고리즘)

  • Yoon, Sung-Eui
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.224-224
    • /
    • 2008
  • Recent advances in model acquisition, computer-aided design, and simulation technologies have resulted in massive databases of complex geometric data occupying multiple gigabytes and even terabytes. In various graphics/geometric applications, the major performance bottleneck is typically in accessing these massive geometric data due to the high complexity of such massive geometric data sets. However, there has been a consistent lower growth rate of data access speed compared to that of computational processing speed. Moreover, recent multi-core architectures aggravate this phenomenon. Therefore, it is expected that the current architecture improvement does not offer the solution to the problem of dealing with ever growing massive geometric data, especially in the case of using commodity hardware. In this tutorial, I will focus on two orthogonal approaches--multi-resolution and cache-coherent layout techniques--to design scalable graphics/geometric algorithms. First, I will discuss multi-resolution techniques that reduce the amount of data necessary for performing geometric methods within an error bound. Second, I will explain cache-coherent layouts that improve the cache utilization of runtime geometric applications. I have applied these two techniques into rendering, collision detection, and iso-surface extractions and, thereby, have been able to achieve significant performance improvement. I will show live demonstrations of view-dependent rendering and collision detection between massive models consisting of tens of millions of triangles on a laptop during the talk.

  • PDF