• Title/Summary/Keyword: Islets of Langerhans transplantation

Search Result 4, Processing Time 0.018 seconds

Suitability of denervated muscle flaps as recipient sites for pancreatic islet cell transplantation

  • Park, Jong-Lim;Kim, Taewoon;Kim, Baek-Kyu
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.133-143
    • /
    • 2021
  • Background Extensive research has been conducted on islet transplantation as a possible cure for diabetes. Islet transplantation in the liver via the portal vein has shown remarkable results, but numerous other recipient sites are currently being investigated. We aimed to show the effectiveness of using a muscle flap as a recipient site for islet transplantation. Methods Islet cells were harvested from 12 isogenic Lewis rats, and then diabetes was induced in another 12 isogenic Lewis rats by streptozotocin injection. In six rats, 3,000 islets were transplanted into gastrocnemius muscle flaps, and in the other six rats, the same number of islets were transplanted into the gastrocnemius muscle. The transplanted islet cell function between the two groups was compared by means of blood glucose tests, glucose tolerance tests, immunohistochemistry, and real-time reverse transcription polymerase chain reaction. Results In the muscle flap group, blood glucose levels significantly decreased after islet transplantation. Blood glucose levels were significantly different between the two groups at 3 weeks after transplantation. The muscle flap group showed nearly normoglycemic results upon the glucose tolerance test, whereas the muscle group was hyperglycemic. Immunohistochemical evaluation showed positive results against insulin and glucagon in biopsies of both groups, and the islet cell density was higher in the muscle flap group. There were no statistically significant differences between the two groups in real-time reverse transcription polymerase chain reaction results. Conclusions Our results suggest that muscle flaps are promising candidates for islet cell transplantation.

Encapsulated Islet Transplantation: Strategies and Clinical Trials

  • Buder, Brian;Alexander, Michael;Krishnan, Rahul;Chapman, David W.;Lakey, Jonathan R.T.
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.235-239
    • /
    • 2013
  • Encapsulation of tissue has been an area of intense research with a myriad number of therapeutic applications as diverse as cancer, tissue regeneration, and diabetes. In the case of diabetes, transplantation of pancreatic islets of Langerhans containing insulin-producing beta cells has shown promise toward a cure. However, anti-rejection therapy that is needed to sustain the transplanted tissue has numerous adverse effects, and the islets might still be damaged by immune processes. Furthermore, the profound scarcity of healthy human donor organs restricts the availability of islets for transplant. Islet encapsulation allows the protection of this tissue without the use of toxic medications, while also expanding the donor pool to include animal sources. Before the widespread application of this therapy, there are still issues that need to be resolved. There are many materials that can be used, differing shapes and sizes of capsules, and varied sources of islets to name a few variables that need to be considered. In this review, the current options for capsule generation, past animal and human studies, and future directions in this area of research are discussed.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

Directed Differentiation of Pancreatic Islets from Human Embryonic Stem Cells and Cell Therapy of Diabetes Mellitus (인간배아줄기세포를 이용한 췌장세포의 유도 분화 및 당뇨병의 세포치료)

  • Kim, Suel-Kee;Shim, Joong-Hyun;Woo, Dong-Hun;Kim, Jong-Hoon
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.67-77
    • /
    • 2007
  • Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans is limited by the lack of donor organs. Therefore, generation of insulin-producing cells from human embryonic stem cells represents an attractive alternative. The present review summarizes the current knowledge on the differentiation of insulin-producing cells from human embryonic stem cells and their application to the cell therapy for treating diabetes mellitus.

  • PDF