• Title/Summary/Keyword: Islanding

Search Result 189, Processing Time 0.025 seconds

Anti-Islanding Algorithm to Improve Power factor and Reduce THD for PV Inverter (역률 향상 및 THD 저감을 위한 태양광 인버터용 단독운전 검출기법)

  • Sung, Won-Yong;Choi, Woo-Hyuk;Jeon, Joon-Young;Shin, Seung-Min;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.238-239
    • /
    • 2010
  • 본 논문은 계통 연계형 태양광 인버터에서 고려해야 하는 단독운전방지 기법의 제안을 위하여 기존의 단독운전 방지 알고리즘에 대해 기술하고, 역률을 향상시키기 위한 새로운 방법을 제시하고 해석한다. 시뮬레이션 모델은 PSIM을 이용하여 회로를 구성하였고 주기적 주파수변동을 통해 역률을 최대화 할 수 있는 주파수의 변동량을 확인하여 전력 시스템 품질을 최대로 이끌어내었다. 또한 기존의 주파수변동 기법과의 고조파 및 역률의 차이를 비교하여 본 논문에서 제안한 주기적인 주파수변동 기법의 타당성을 검증한다.

  • PDF

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost

  • Zhu, Junpeng;Gu, Wei;Jiang, Ping;Song, Shan;Liu, Haitao;Liang, Huishi;Wu, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2146-2156
    • /
    • 2017
  • When a failure occurs in active distribution system, it will be isolated through the action of circuit breakers and sectionalizing switches. As a result, the network might be divided into several connected components, in which distributed generations could supply power for customers. Aimed at decreasing customer interruption cost, this paper proposes a theoretically optimal island partition model for such connected components, and a simplified but more practical model is also derived. The model aims to calculate a dynamic island partition schedule during the failure recovery time period, instead of a static islanding status. Fluctuation and stochastic characteristics of the renewable distributed generations and loads are considered, and the interruption cost functions of the loads are fitted. To solve the optimization model, a heuristic search algorithm based on the hill climbing method is proposed. The effectiveness of the proposed model and algorithm is evaluated by comparing with an existing static island partitioning model and intelligent algorithms, respectively.

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

Performance Analysis of Three-Phase Phase-Locked Loops for Distorted and Unbalanced Grids

  • Li, Kai;Bo, An;Zheng, Hong;Sun, Ningbo
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper studies the performances of five typical Phase-locked Loops (PLLs) for distorted and unbalanced grid, which are the Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL), Double Second-Order Generalized Integrator PLL (DSOGI-PLL), Double Second-Order Generalized Integrator Frequency-Lock Loop (DSOGI-FLL), Double Inverse Park Transformation PLL (DIPT-PLL) and Complex Coefficient Filter based PLL (CCF-PLL). Firstly, the principles of each method are meticulously analyzed and their unified small-signal models are proposed to reveal their interior relations and design control parameters. Then the performances are compared by simulations and experiments to investigate their dynamic and steady-state performances under the conditions of a grid voltage with a negative sequence component, a voltage drop and a frequency step. Finally, the merits and drawbacks of each PLL are given. The compared results provide a guide for the application of current control, low voltage ride through (LVRT), and unintentional islanding detection.

The Over-current relay considering operating conditions of the micro-grid (마이크로그리드의 운전조건을 고려한 과전류계전기)

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Cha, Sun-Hee;Jang, Sung-Il;Lee, Byung-Eun;Kim, Yong-Gyun;Park, Goon-Cherl
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.484-485
    • /
    • 2008
  • A micro-grid (MG) is a new concept to aggregate distributed generations (DGs) and loads in a small area. The difference between MG and DG is that MG can supply power to loads even in islanding conditions. The magnitude of the fault current depending on interconnection between the MG and utility and the number of DGs in the MG. Therefore, the setting value of the OCR must be changed depending on operating conditions of the MG. This paper proposes the over-current relay considering operating conditions of the MG. In the proposed algorithm, the supervisory control and data acquisition decides the operating conditions of the MG and sends the proper setting values to each OCR. The performance of the algorithm was investigated in the case of the various operating conditions.

  • PDF

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

Performance Verification of Anti-Islanding of Reactive Power Variation Method using Positive Feedback (정궤환을 이용한 무효전력 변동기반의 단독운전 방지 성능 검증)

  • Jo, Jongmin;An, Hyunsung;Park, Jiho;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.141-143
    • /
    • 2018
  • 본 논문은 계통연계형 인버터의 단독운전 방지를 위해 정궤환을 이용한 무효전력 변동기법을 제안하였으며, 구현 및 실험을 통해 단독운전 방지 성능을 검증하였다. PCC 지점에는 양호도($Q_f$) 2.5의 특성을 갖는 3상 RLC 부하가 연결되며, 부하 공진주파수는 60Hz로 설정하였다. 무효전력 변동기법은 일정 크기로 주입되는 무효분과 주파수 편차를 이용한 정궤환으로부터 공급되는 무효분으로 구성된다. 계통연계 운전 시에는 일정한 무효전력 성분만이 공급되며 역률은 0.9975이다. 단독운전 발생 시, 일정 무효전력 때문에 변화된 PCC 주파수와 계통 정격주파수 간의 편차는 정궤환 성분을 활성화하고, 증가된 무효전력에 의한 PCC 주파수 변화를 검출하여 단독운전을 판단한다. 1.7kW 3레벨 T-타입 인버터를 통해 단독운전 방지 성능을 실험하였으며, 검출시간은 각각 53ms, 150ms로써 우수한 성능을 검증하였다.

  • PDF