• Title/Summary/Keyword: Island and Rocks

Search Result 183, Processing Time 0.024 seconds

Environmental and Ecological Consequences of Submarine Groundwater Discharge in the Coastal Areas of the Korea Peninsula (한반도 연안 해역에서 해저 지하수 유출의 환경 생태학적 중요성)

  • KIM GUEBUEM;HWANG DONG-WOON;RYU JAE-WOONG;LEE YONG-WOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.204-212
    • /
    • 2005
  • Recognition has emerged that nutrient inputs from the submarine discharge of fresh, brackish, and marine groundwaters into the coastal ocean are comparable to the inputs via river discharge. The coastal areas of the Korea peninsula and adjacent seas exhibit particular importance in the role of submarine groundwater discharge (SGD), in terms of the magnitude of SGD and associated continental material fluxes. For example, in the southern sea of Korea, SGD transports excess nutrients into the coastal regions and thus appears to influence ecosystem changes such as the outbreak of red tides. Around volcanic island, Jeju, which is composed of high permeability rocks, the amount of SGD is higher by orders of magnitude relative to the eastern coast of North America where extensive SGD studies have been conducted. In particular, nutrient discharge through SGD exerts a significant control on coastal ecosystem changes and results in benthic eutrophication in semi-enclosed Bang-du bay, Jeju. In the entire area of the Yellow Sea, tile submarine discharge of brackish groundwater and associated nutrients are found to rival the river discharges into the Yellow Sea, including those through Yangtze River, Han River, etc. In the eastern coast of the Korea peninsula, SGD is significantly higher during summer than winter due to high hydraulic gradients and due to wide distribution of high permeability sandy zones, faults, and fractures. On the other hand, in the estuarine water, downstream construction of the dam in the Nakdong River, SGD was highest when the river discharge was lowest (but water level of the dam was highest). This suggests that even though there is no visible freshwater discharge into this estuary, the discharge of chemical species is significant through SGD. On the basis of the results obtained from the coastal areas of the Korea peninsula, SGD is considered to be an important pathway of continental contaminants influencing tidal-flat ecosystems, red tides, and coral ecology. Thus, future costal management should pay great attention to the impact of SGD on coastal pollution and eutrophication.

Metamorphic Evolution of Metabasites and Country Gneiss in Baekdong Area and Its Tectonic Implication (백동지역의 변성염기성암과 주변 편마암의 변성진화과정과 그 지구조적 의미)

  • 오창환;최선규;송석환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.103-120
    • /
    • 2002
  • In the Baekdong-Hongseong area, the southwestern part of the Gyeonggi Massif in Korea, ultramafic rocks occur as lenses within Precambrian granitic gneiss. At Baekdong area, ultramafic lens contains metabasite boudin which had undergone at least three stages of metamorphisms. The mineral assemblage on the first stage, Garnet+Sodic Augite+Hornblende+Plagioclase+Titanite, is recognized from the inclusions in garnet. The second stage is represented by the assemblage in matrix, Garnet+ Augite+Hornblende+Plagioclase, while the third stage is identified by the Hornblende+Plagjoclase $\pm$ Garnet assemblage in the symplectite formed around garnet. The P-T conditions of the first and the third stages are $690-780^{\circ}C$, 11.8-15.9 kb and $490-610^{\circ}C$, 4.0-6.3 kb, respectively. These data indicate that metabasite in Baekdong area had experienced a retrouade P-T path from the eclogite(EG) - high-pressure granulite (HG)-amphibolite (AM) transitional facies to the AM through HG-AM transitional facies. The core and rim of garnet in country granitic gneiss give $605-815^{\circ}C$, 10.7-16.0 kb and $575-680^{\circ}C$, 5.4-7.0 kb, respectively, indicating that the retrograde P-T path of granitic gneiss is similar to that of metabasite. Trace element data reveals that the tectonic setting of metabasite is island uc. The general geology, the metamorphic evolution, the mineral chemistry and the tectonic setting of Baekdong area indicate that the Baekdong-Hongseong area in Korea is a possible extension of the Sulu collision Belt in China. On the other hand, the Sm-Nd whole rock-garnet isochron ages of metabasites are 268.7-297.9 Ma which are older than the ages of UHP metamorphism (208-245 Ma) in the Dabie-Sulu Collision Belt. The older metamorphic ages suggest that collision between Sino-Korea and Yangtz plates may have occurred earlier in Korean Peninsula than China.

Geochemical Studies of the Trace Element of the Basalt in the Kilauea, Hawaii (킬라우에아 현무암의 미량원소에 대한 지구화학적 연구)

  • Park, Byeong-Jun;Jang, Yun-Deuk;Kwon, Suk-Bom;Kim, Jeong-Jin
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.675-689
    • /
    • 2007
  • Kilauea volcano's summit area was formed by continuous ind/or sporadic eruption activities for several hundreds years. In this study, we mainly focused on the trace elements characteristics through systematic sample rocks erupted from 1790 to September of 1982. Under the microscope it can be observed some main minerals such as olivine, clinopyroxene. and plagioclase with minor opaque minerals including Cr-spinel and ilmenite. Zr, V, Y, Ti elements show incompatible activities with MgO while Ni, Cr, Co elements show highly compatible properties. Elements like as Ba, Rb, Th, Sr, Nd are highly incompatible to show positive trends with $K_2O$. In the REE diagram LREE is more enriched than HREE suggesting typical Oceanic Island Basalt(OIB) type. It can be suggested that Sr have an effect on the fractionation of plagioclase from the kink in the $K_2O$ variation diagram. Y/Ho ratio diagram shows there was no fluids effect in the historical Kilauea volcano but Zr/Hf ratio diagram shows a significant difference between Kilauea lavas and PuuOo lavas. There are distinctive changes of trace element contents showing in particular abrupt changes of temporal variations between 1924 and 1954. Moreover, PuuOo lavas which had been erupted since 1983 follow these decreasing trends of trace element variation. Therefore, it is strongly suggested that these abrupt changes of trace elements trends result from the huge collapse geological event which formed Halemaumau crater in 1924 causing contamination effects of crustal contents into magma chamber and from the changes of parental magma composition injected into Kilauea volcano's summit magma reservoir.