• Title/Summary/Keyword: Ischemic Damage

Search Result 287, Processing Time 0.023 seconds

Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells

  • Koh, Phil-Ok
    • Laboraroty Animal Research
    • /
    • v.33 no.3
    • /
    • pp.244-250
    • /
    • 2017
  • ${\alpha}$-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined ${\alpha}$-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in ${\alpha}$-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased ${\alpha}$-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that ${\alpha}$-synuclein regulates neuronal survival, and low levels of ${\alpha}$-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in ${\alpha}$-synuclein and consequently causes serious brain damage.

Galanin's implications for post-stroke improvement

  • Song, Juhyun;Kim, Oh Yoen
    • Anatomy and Cell Biology
    • /
    • v.49 no.4
    • /
    • pp.223-230
    • /
    • 2016
  • Stroke leads to a variety of pathophysiological conditions such as ischemic infarct, cerebral inflammation, neuronal damage, cognitive decline, and depression. Many endeavors have been tried to find the therapeutic solutions to attenuate severe neuropathogenesis after stroke. Several studies have reported that a decrease in the neuropeptide regulator 'galanin' is associated with neuronal loss, learning and memory dysfunctions, and depression following a stroke. The present review summarized recent evidences on the function and the therapeutic potential of galanin in post-ischemic stroke to provide a further understanding of galanin's role. Hence, we suggest that galanin needs to be considered as a therapeutic factor in the alleviation of post-stroke pathologies.

Neuroprotective effect of Hexane fraction of A0054 on Delayed Neuronal Death after Transient global Ischemia in Gerbil Hippocampus

  • Kim, Haw-Jung;Lee, Sung-Jin;Je, Kang-Hoon;Mar, Woong-Chon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.145.1-145.1
    • /
    • 2003
  • Several lines of recent evidences have shown that several pro-inflammatory genes or mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and cytokines (e.g., tumor necrosis factor $\alpha$ and interleukin-1$\beta$), are strongly expressed in the ischemic brain. Inflammation is now recognized as a significant contributing mechanism in cerebral ischemia because anti-inflammatory compounds or inhibitors of iNOS and cyclooxygenase-2 have been proven to reduce ischemic brain damage. (omitted)

  • PDF

Neuroprotective effects of Hexane fraction of M61 on Delayed Neuronal Death after Transient global Ischemia in Gerbil Hippocampus

  • Kim, Haw-jung;Kang, Hoon-Je;Mar, Woong-Chon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.205.1-205.1
    • /
    • 2003
  • Several lines of recent evidences have shown that several pro-inflammatory genes or mediators, such as inducible nitric oxide synthase (iNOS)are strongly expressed in the ischemic brain. Inflammation is now recognized as a significant contributing mechanism in cerebral ischemia because anti-inflammatory compounds or inhibitors of iNOS have been proven to reduce ischemic brain damage. In iNOS assay, hexane fraction of M61 inhibited NO (iNOS IC50, 0.7${\mu}$g/ml). In vivo study was carried out to evaluate neuroprotective effect of hexane fraction of M61 after transient global ischemia using Mongolian gerbil ischemia model. (omitted)

  • PDF

Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향)

  • Lee, Hwan-Sung;Park, Sung-Joon;Jung, Kwang-Sik;Sohn, Young-Joo;Jung, Hyuk-Sang;Park, Dong-Il;Sohn, Nak-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia (허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과)

  • Kim, Bong-Sang;Lee, Sun-Woo;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

Implantation of bone marrow mononuclear cells using fibrin gels enhances neovascularzation in ischemia myocardium

  • Ryu, Ju-Hee;Kim, Il-Kwon;Cho, Seung-Woo;Cho, Myeong-Chan;Hwang, Kyung-Kuk;Piao, Shuguang;Piao, Hainan;Lim, Sang-Hyun;Yoo, Kyung-Jong;Hong, Yoo-Sun;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.164-166
    • /
    • 2003
  • Despite recent advances in the treatment of acute myocardial infarction, the ability to repair extensive myocardial damage is limited. Revascularization in ischemic myocardium is required to improve cardiac function and prevent further scar tissue formation. Bone marrow contains endothelial precursors that can be used to induce neovascularization in ischemic myocardium. To develop a new therapy for myocardial infarction, we investigated if implantation of bone marrow mononuclear cells (BM-MNCs) using biodegradable matrices could enhance neovascularization in ischemic myocardium. Eight weeks after implantation, the damaged myocardium implanted with BM-MNCs and fibrin gels exhibited significantly greater angiogenic responses than those implanted with either fibrin gels or BM-MNCs alone. Fibrin gels disappeared completely 8 weeks after implantation. Echocardiography revealed improved heart functions. These results suggest that implantation of BM-MNCs using fibrin gel matrix efficiently induces neovascularization and improved heart functions in ischemic myocardium.

  • PDF

The Experimental Study of FOENICULI FRUCTUS on the Ischemic Cerebrovascular Disease (소회향이 허혈성 뇌혈관 질환에 미치는 실험적 연구)

  • Kim, Nam-Soon;Jeong, Hyun-Woo;Kang, Sung-Yung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.185-196
    • /
    • 2007
  • Objective : This experimental Study was designed to investigate the effects of FOENICULI FRUCTUS(FF) on the change of inhibition lactate dehydrogenase(LDH) activity in neuronal cells and cytokines production in serum of cerebral ischemic rats. Method : FOENICULI FRUCTUS(FF)freeze dry powder and FF on the LDH activity in neuronal cells. Changes of FF on the physiological parameters(PaO2, PaCO2, MABP and HR) in crerbral ischemic rats. Effects of FF on the IL-1beta production, $TNF-{\alpha}$ production, $TGF-{\beta}$ production, and IL-10 in serum of cerebral ischemic rats. MCAO :. cytokines production of serum by drawing from femoral arterial blood after MCAO 1 hr. Reperfusion : cytokines production of serum by drawing from femoral arterial blood after reperfusion 1 hr. Results and Conclusion : 1. FF did not inhibit lactate dehydrogenase(LDH) activity in neuronal cells. 2. In serum by drawing from femoral arterial blood after middle cerebral arterial occlusion(MCAO) 1 hr and reperfusion 1 hr, sample group was significantly decreased $IL-l{\beta}$ production compared with control group 3. In serum by drawing from femoral arterial blood after MCAO 1 hr and reperfusion 1 hr, sample group was significantly decreased $TNF-{\alpha}$ production compared with control group. 4. In serum by drawing from femoral arterial blood after MCAO 1 hr and reperfusion 1 hr, sample group was significantly increased $TGF-{\beta}$ production compared with control group. 5. In serum by drawing from femoral arterial blood after reperfusion 1 hr, sample group was significantly increased IL-10 production compared with control group. This results were suggested that FF had inhibitive effect on the brain damage by inhibited LDH activity, $IL-l{\beta}$ and $TNF-{\alpha}$production, but accelerated $TGF-{\beta}$ production and IL-10 production.

  • PDF

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

Neuroprotective Effect of Citri Pericarpium On Transient Global Ischemia in Gerbils

  • Kim Jiae;Jung Hyuk-Sang;Won Ran;Park Ji-Ho;Kang Chul hun;Sohn Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.594-601
    • /
    • 2002
  • The current study was carried out to evaluate neuroprotective effects of Citri Pericarpium after transient global ischemia in gerbils. Male Mongolian gerbils weighing 60-80g were anesthetized with 2% isoflurane mixed with 30% oxygen and 70 % nitrogen. Bilateral common carotid arteries were occluded for 5 minute with microaneurysm dips. On 3 or 7 days after ischemic surgery, the gerbils were sacrificed. The brain were removed, embedded in paraffin and sectioned at 8㎛-thickness. Gerbils that received ischemic insult for 5 min showed extensive neuronal damage in the hippocampal CA1 region, and the number of viable neuronal cell was 51.0±2.5/mm, 32.2% of normal group at 7 days after ischemic surgery. In animals that underwent the extract of Citri Pericarpium treatment, the number of viable neuronal cell were significantly better preserved at 110.58±3.58/mm, 72.0% of normal group than those of ischemic group (P<0.01). In the immunohistochemistry of Bax and Bcl-2, the Citri Pericarpium treated group down-regulated the expression of Bax protein at 72hr after transient global ischemia. In contrast, Bcl-2 protein level was not changed. The appearance in TUNEL assay is similar to the pattern of Bax protein. The water extract of Citri Pericarpium significantly reduced the number of TUNEL-positive CA1 pyramidal neurons at 72hr. The results suggest that Citri Pericarpium has potential neuroprotective effects in the transient global ischemia and the increase in the ratio of Bcl-2 to Bax may contribute to the anti-apoptotic effect of Citri Pericarpium.