• 제목/요약/키워드: Ischemia/reperfusion injury

검색결과 282건 처리시간 0.026초

Protective Effects of Geniposide and Genipin against Hepatic Ischemia/Reperfusion Injury in Mice

  • Kim, Joonki;Kim, Hyo-Yeon;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.132-137
    • /
    • 2013
  • Geniposide is an active product extracted from the gardenia fruit, and is one of the most widely used herbal preparations for liver disorders. This study examined the cytoprotective properties of geniposide and its metabolite, genipin, against hepatic ischemia/reperfusion (I/R) injury. C57BL/6 mice were subjected to 60 min of ischemia followed by 6 h of reperfusion. Geniposide (100 mg/kg) and genipin (50 mg/kg) were administered orally 30 min before ischemia. In the I/R mice, the levels of serum alanine aminotransferase and hepatic lipid peroxidation were elevated, whereas hepatic glutathione/glutathione disulfide ratio was decreased. These changes were attenuated by geniposide and genipin administration. On the other hand, increased hepatic heme oxygenase-1 protein expression was potentiated by geniposide and genipin administration. The increased levels of tBid, cytochrome c protein expression and caspase-3 activity were attenuated by geniposide and genipin. Increased apoptotic cells in the I/R mice were also significantly reduced by geniposide and genipin treatment. Our results suggest that geniposide and genipin offer significant hepatoprotection against I/R injury by reducing oxidative stress and apoptosis.

간장내 허혈 및 재관류시 Vitamin E와 C의 간세포 보호작용 (Vitamins E and C: Are They Synergistic in Protecting Liver Cells against Hepatic Ischimia and Reperfusion Injury\ulcorner)

  • 이선미;김순애;조태순
    • Biomolecules & Therapeutics
    • /
    • 제5권1호
    • /
    • pp.59-66
    • /
    • 1997
  • This study was done to determine that vitamins I and C are synergistic in protecting liver cells during hepatic ischemia and repefusion. Rats treated with vitamins I and C were subjected to 60 min of hepatic ischemia and to 1 and 5 hr of reperfusion thereafter. Serum aminotransferase level and microsomal lipid peroxidation were markedly increased by ischemia/reperfusion. These increases were significantly attenuated by vitamins E, C or its combination. Hepatic wet weight-to-dry weight ratio was increased in ischemic group, but this increase was prevented by combination of vitamin I and C. Bile flow and cholate output were markedly decreased by ischemia/reperfusion and vitamin C alone and combination of vitamin I and C restored their secretion. Cytochrome P-450 content and aminopyrine N-demethylase activity were decreased by ischemia/ reperfusion and restored by vitamin C and combination of vitamin I and C to the level of sham-operated rat. Aniline p-hydroxylase activity was increased by ischemia/reperfusion and this increase was prevented by vitamin E. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory and microsomal functions by increasing lipid peroxidation and vitamins I and C synergistically ameliorates these changes.

  • PDF

Acute hepatic injury following ischemia and reperfusion in rats

  • Park, Mee-Jung-;Lee, Sang-Ho-;Park, Doo-Soon-;Cho, Tai-Soon;Lee, Sun-Mee-
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.340-340
    • /
    • 1994
  • Since total hepatic ischemia(IS) occurs with transplantation, there has been interest in evaluating hepatic function after ischemia and subsequent reflow of blood. Four groups of animals were studied: group 1 (sham), group 2 (30mins IS), group 3 (60mins IS), and g.cup 4 (90mins IS). Serum transaminase(STA), wet weight-to-dry weight ratio(W/D), lipid peroxides(LPO), glucose-6-phosphatase(G-6-Pase) activity, Na$\^$+//K$\^$+/-ATPase(ATPase) activity were measured at 1, 5 and 24hrs after hepatic ischemia. Significant changes occurred between 1 and 5hrs of reperfusion. STA was 3579${\pm}$401, 4593${\pm}$675 and 6348${\pm}$808 U/L in group 2, 3 and 4 respectively. These changes were ischemic time-dependent manner. W/D in group 3 and 4 were significantly increased than that in sham group at all time points measured. In sham group, the level of LPO in the liver microsome remained constant at approximately 0. 5nmole MDA formed/mg protein througllout the experiment, In all ischemic groups on the other hand, the level of LPO started to increase at ischemia and markedly increased at all reperfusion period. Similar to STA, these changes were also dependent on duration of ischemia. Although G-6-Pase activity remained unchanged in both group 2 and group 3 until 5hrs of reperfusion, marked decrease in G-6-Pase activity was observed at grcup 4. ATPase activity was significantly decreased at 1, 5 and 24 hrs of reperfusion in group 3, whereas it was not changed in group 2. Furthermore, ATPase activity in group 4 started to decrease at ischemia and markedly decreased for entire reperfusion period. These data suggest that severity of hepatocellular injury is associated with period of ischemia as well as period of reperfusion.

  • PDF

The Role of Oxygen Free Radicals and Phospholipase $A_2$ in Ischemia-reperfusion Injury to the Liver

  • Park, Mee-Jung;Cho, Tai-Soon;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제18권3호
    • /
    • pp.189-194
    • /
    • 1995
  • The focus of this study was to investigate the influences of enzymatic scavengers of active oxygen metabolites and phospholipase $A_2$ inhibitor on hepatic secretory and microsomal function during hepatic ischemia/reperfusion. Rats were pretreated with free radical scavengers such as superoxide dismutase (SOD), catalase, deferoxamine and phospholipase $A_2$ inhibitor such as quinacrine and then subjected to 60 min. no-flow hepatic ischemia in vivo. After 1, 5 hr of reperfusion, bile was collected, blood was obtained from the abdominal aorta, and liver microsomes were isolated. Serum aminotransferase (ALT) level was increased at 1 hr and peaked at 5 hr. The increase in ALT was significantly attenuated by SOD plus catalase, deferoxamine and quinacrine especially at 5 hr of reperfusion. The wet weight-to-dry weight ratio of the liver was significantly increased by ischemia/reperfusion. SOD and catalase treatment minimized the increase in this ratio. Hepatic lipid peroxidiltion was elevated by ischemia/reperfusion, and this elevation was inhibited by free radical scavengers and quina crine. Bile flow and cholate output, but not bilirubin output, were markedly decreased by ischemia/reperfusion and quinacrine restored the secretion. Cytochrome $P_{450}$ content was decreased by ischemia/reperfusion and restored by free radical scavengers and quinacrine to the level of that of the sham operated group. Aminopyrine N-demethylase activity was decreased and aniline p-hydroxylase was increased by ischemia/reperfusion. The changes in the activities of the two enzymes were prevented by free radical scavengers and quinacrine. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory functions as well as microsomal drug metabolizing systems by increasing lipid peroxidation, and in addition to free radicals, other factors such as phospholipase $A_2$ are involved in pathogenes of hepatic dysfunction after ischemia/reperfusion.

  • PDF

Neuroprotective Effects of Ginkgo biloba extract, GBB, in the Transient Ischemic Rat Model

  • Oh, Jin-Kyung;Jung, Ji-Wook;Oh, Hye-Rim;Han, Yong-Nam;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제15권3호
    • /
    • pp.169-174
    • /
    • 2007
  • In the present study, we investigated the neuroprotective effects of standardized Ginkgo biloba extract (GBB) (total terpene trilactones, 13 ${\pm}$ 3%; biflavone, 4.5 ${\pm}$ 1.5%; flavonol glycoside, < 8%; proanthocyanidine, under detection limit) on ischemia-reperfusion-induced brain injury in the rats. Ischemia was induced by the intraluminal occlusion of the right middle cerebral artery for 2 h and reperfusion was continued for 22 h. GBB was orally administered, promptly prior to reperfusion and 2 h after. Total infarction volume in the ipsilateral hemispheres of ischemia-reperfusion rats were significantly reduced by treatment with GBB in a dose-dependent manner (P<0.05). The therapeutic time window of GBB was 3 h in this ischemia-reperfusion rat model. Furthermore, GBB also significantly inhibited increased neutrophil infiltration of ischemic brain tissue, as estimated by myeloperoxidase activity. These findings suggest that GBB plays a crucial protective role in ischemia-induced brain injury, in part, via inhibition of neutrophil infiltration, and suggest that this GBB could serve as a neuroprotective agent following transient focal ischemic brain injury.

정상 및 허혈/재관류 흰쥐 심장에 대한 2-클로로-3-(4-시아노페닐아미노 )-1,4-나프토퀴논 ( NQ-Y15 )의 작용 (Effects of 2-Chloro-3-( 4-cyanophenylamino )-1,4-naphthoquinone( NQ-Y15 ) on Normal and Ischemical/reperfused Rat Hearts)

  • 문창현;김지영;백은주;이수환;류충규
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.829-836
    • /
    • 1997
  • Studies on the effect of quinones on cardiac function has been conducted with normal hearts. But not with injured hearts, I.e. ischemia/reperfusion-injured heart. Quinone compounds are known to produce oxygen free radicals during metabolism, and for this reason, quinones are implicated in the aggravation of ischemia/reperfusion injury or cardioprotection, as in the case of ischemic preconditioning depending on the experimental conditions. The present study was carried out to examine the effect of 2-chloro-3-(4-cyanophenylamino)-1.4-naphthoquinone (NQ-Y15) on cardiac function of ischemic/reperfused and normal rat hearts. In isolated perfused hearts, various functional parameters such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (EDP) and maximum positive and negative dP/dt ($[\pm}dP/dt_{max}$), time to contracture, heart rate (HR) and coronary flow rate (CFR) were measured before and 30 min after dosing and following 25 min ischemia/30min reperfusion. NQ-Y15 increased LVDP, +dP/$d_{max}$and -dP/$dt_{min}$ by 18%. 30%, and 40%, respectively. There were no significant changes in other haemodynamic parameters. After ischemia/reperfusion injury, pretreatment with NQ-Y15 induced a significant decrease in LVDP and $[\pm}dP/dt_{max}$, but an increase in EDP. LDH-release was not significantly increased. These results suggested that NQ-Y15 may augment the ventricular contractility but it makes hearts more vulnerable to ischemia/reperfusion injury.

  • PDF

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.

백서 복직근판의 허혈-재관류 손상에 대한 Erythropoietin의 영향 (The Effect of Erythropoietin on Ischemia-Reperfusion Injury: An Experimental Study in Rat TRAM Flap Model)

  • 김은기;홍준표
    • Archives of Plastic Surgery
    • /
    • 제33권5호
    • /
    • pp.621-626
    • /
    • 2006
  • Purpose: Erythropoietin is traditionally known to regulate erythropoiesis, but recently its protective effect against ischemia-reperfusion injury has been studied mainly in cardiovascular and neuronal systems. This study was planned to investigate the effects of recombinant human erythropoietin on ischemia-reperfusion injury in rat TRAM flap model. Methods: Superiorly based TRAM flap was elevated and ischemic insult was given for four hours. Thirty minutes before reperfusion, single dose recombinant human Erythropoietin(5000IU/kg) was injected via intraperitoneal route in the treatment group. At 24 hours postoperatively, systemic neutrophil count, tissue myeloperoxidase activity, malonyldialdehyde amount, nitric oxide content, tissue water content and histologic finding of inflammation was evaluated. On 10 days postoperatively, flap survival rate, angiogenesis and change in hematocrit level was evaluated. Results: Tissue nitric oxide level was significantly higher and myeloperoxidase activity was significantly lower in the treatment group 24 hours after reperfusion. Tissue water content was significantly lower in the treatment group. Perivascular neutrophil infiltration and intravascular adhesion was marked in the control group. Mean flap survival after ten days was 69% in the treatment group, and 47% in the control group, demonstrating a significant difference. Neovascularization in the treatment group also outnumbered the control group. No significant hematocrit rise was noted ten days after erythropoietin administration. Conclusion: Recombinant human Erythropoietin improved flap survival in ischemia-reperfusion injured rat TRAM flaps, at least partially owing to suppressed inflammation, increased nitric oxide, and enhanced angiogenesis.

The Effects of Ischemic Postconditioning on Myocardial Function and Nitric Oxide Metabolites Following Ischemia-Reperfusion in Hyperthyroid Rats

  • Zaman, Jalal;Jeddi, Sajjad;Ghasemi, Asghar
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.481-487
    • /
    • 2014
  • Ischemic postconditioning (IPost) could decrease ischemia-reperfusion (IR) injury. It has not yet reported whether IPost is useful when ischemic heart disease is accompanied with co-morbidities like hyperthyroidism. The aim of this study was to examine the effect of IPost on myocardial IR injury in hyperthyroid male rats. Hyperthyroidism was induced with administration of thyroxine in drinking water (12 mg/L) over a period of 21 days. After thoracotomy, the hearts of control and hyperthyroid rats were perfused in the Langendorff apparatus and subjected to 30 minutes global ischemia, followed by 120 minutes reperfusion; IPost, intermittent early reperfusion, was induced instantly following ischemia. In control rats, IPost significantly improved the left ventricular developed pressure (LVDP) and ${\pm}dp/dt$ during reperfusion (p<0.05); however it had no effect in hyperthyroid rats. In addition, hyperthyroidism significantly increased basal $NO_x$ (nitrate+nitrite) content in serum ($125.5{\pm}5.4{\mu}mol/L$ vs. $102.8{\pm}3.7{\mu}mol/L$; p<0.05) and heart ($34.9{\pm}4.1{\mu}mol/L$ vs. $19.9{\pm}1.94{\mu}mol/L$; p<0.05). In hyperthyroid groups, heart $NO_x$ concentration significantly increased after IR and IPost, whereas in the control groups, heart $NO_x$ were significantly higher after IR and lower after IPost (p<0.05). IPost reduced infarct size (p<0.05) only in control groups. In hyperthyroid group subjected to IPost, aminoguanidine, an inducible nitric oxide (NO) inhibitor, significantly reduced both the infarct size and heart $NO_x$ concentrations. In conclusion, unlike normal rats, IPost cycles following reperfusion does not provide cardioprotection against IR injury in hyperthyroid rats; an effect that may be due to NO overproduction because it is restored by iNOS inhibition.

MCT(medium-chain triglyceride) 및 LCT(long-chain triglyceride) 유제가 백서에서 허혈/재관류 심장기능손상 및 혈소판응집능에 미치는 영향 (Effect of MCT (medium-chain triglyceride) and LCT (long-chain triglyceride) on Myocardial Ischemia/Reperfusion Injury and Platelet Aggregation in Rat)

  • 이수환;정이숙;홍정;김민화;이희주;백은주;왕희정;김명욱;문창현
    • Biomolecules & Therapeutics
    • /
    • 제6권4호
    • /
    • pp.358-363
    • /
    • 1998
  • Intravenous lipid emulsion is used extensively as a major component of parenteral nutrition for patients in the surgical intensive care unit. Abnormal cardiovascular function related to lipid infusion has been reported although conflicting results exist. In the present study, we investigated the effects of intravenous emulsions of long-chain triglyceride (LCT) and medium-chain triglyceride (MCT) on myocardial ischemia/ reperfusion injury and on platelet aggregation in rat. There was no difference between LCT and MCT considering the effects on left ventricular developed pressure (LVDP) and coronary flow rate (CFR) before and after ischemia/reperfusion in isolated rat heart. On the other hand, a difference was found between LCT and MCT with regard to their effects on heart rate (HR) and end diastolic pressure (EDP) after ischemia/reperfusion. After ischemia/reperfusion, HR was significantly (P<0.05) reduced and EDP significantly (P<0.05) inc.eased by LCT (18$\pm$2.0% and 42.8$\pm$8.9%, respectively), but not by MCT Ex vivo platelet aggregation induced by collagen was reduced by LCT infusion, but not by MCT These findings suggest that MCT may have slightly more favorable effect than LCT on the myocardial function after ischemia/reperfusion in rat.

  • PDF