• Title/Summary/Keyword: Isaria javanica pf185

Search Result 2, Processing Time 0.016 seconds

Tobacco Growth Promotion by the Entomopathogenic Fungus, Isaria javanica pf185

  • Lee, Yong-Seong;Kim, Young Cheol
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.126-133
    • /
    • 2019
  • Isaria javanica pf185 is an important entomopathogenic fungus with potential for use as an agricultural biocontrol agent. However, the effect of I. javanica pf185 on plant growth is unknown. Enhanced tobacco growth was observed when tobacco roots were exposed to spores, cultures, and fungal cell-free culture supernatants of this fungus. Tobacco seedlings were also exposed to the volatiles of I. javanica pf185 in vitro using I-plates in which the plant and fungus were growing in separate compartments connected only by air space. The length and weight of seedlings, content of leaf chlorophyll, and number of root branches were significantly increased by the fungal volatiles. Heptane, 3-hexanone, 2,4-dimethylhexane, and 2-nonanone were detected, by solid-phase micro-extraction and gas chromatography-mass spectrophotometry, as the key volatile compounds produced by I. javanica pf185. These findings illustrate that I. javanica pf185 can be used to promote plant growth, and also as a biocontrol agent of insect and plant diseases. Further studies are necessary to elucidate the mechanisms by which I. javanica pf185 promotes plant growth.

Effects of Temperature and Culture Media Composition on Sporulation, Mycelial Growth, and Antifungal Activity of Isaria javanica pf185

  • Lee, Jang Hoon;Lee, Yong Seong;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.99-106
    • /
    • 2021
  • The fungal isolate Isaria javanica pf185 has potential as a mycopesticide because it demonstrates insecticidal activity against the green peach aphid and antifungal activity against Colletotrichum gloeosporioides. For commercialization of this isolate, determination of the optimal and least expensive culture conditions is required; however, these data are not currently available. This study describes the conditions for optimal development of conidia and production of metabolites for the biocontrol of the fungal pathogen. The optimal culture conditions were examined using cultures on solid agar and liquid media. High growth temperature enhanced spore formation but reduced antifungal activity in both solid and liquid media. The highest spore yield was obtained in a medium containing glucose as a carbon source and yeast extract as a nitrogen source. Soybean powder and wheat bran were effective nitrogen sources that promoted spore production and antifungal activity of the isolate. These results revealed the basic, cost-effective growth media for commercial production of a biopesticide with insecticidal and antifungal properties for use in integrated pest management.