• Title/Summary/Keyword: Irrigation water requirement

Search Result 102, Processing Time 0.031 seconds

Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios (기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망)

  • Nam, Won-Ho;Hong, Eun-Mi;Kim, Taegon;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

Performance of Three Warm Season Turfgrasses under Linear Gradient Irrigation

  • Ow, Lai Fern;Ghosh, Subhadip
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • The appropriate level of irrigation for turfgrasses is vital to the performance of the turfgrass as well as conservation of water. Linear gradient irrigation system (LGIS) facilitates long-term study of turf performance under continuous irrigation gradients at extreme ends of the irrigation scale. The objectives of this study were to: a) determine the minimum irrigation requirements and relative drought resistance in three warm season turfgrasses; and b) evaluate the medium to long-term effects of irrigation levels on turf persistence, weed invasion, and susceptibility to diseases. Results suggest that grasses differed in drought resistance and persistence under variable irrigation regimes. Irrigation (Ep) required for consistent acceptable turf quality for respective grasses was Cynodon dactylon x C. transvaalensis (61%), Zoysia matrella L. Merr (73%), and Stenotaphrum secundatum 'Palmetto' (86%). Brown patch infection was most prevalent in Stenotaphrum secundatum 'Palmetto' at 12 and 125% Ep irrigation. Cynodon dactylon x C. transvaalensis and Zoysia matrella L. Merr were better able to adapt to the various irrigation regimes, and this ability allowed these species to resist drought, and maintain turf coverage which in turn, kept weeds and the occurrence of diseases at bay. Ranking these grasses for their drought tolerance abilities showed that Cynodon dactylon x C. transvaalensis had the most outstanding resistance against drought, followed by Zoysia matrella L. Merr, and lastly, Stenotaphrum secundatum 'Palmetto'. Despite having the highest irrigation requirement, Stenotaphrum secundatum 'Palmetto' was still not able to maintain persistence at high irrigation regimes. Likewise, this grass also lost turf coverage at low irrigation levels.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

The Study on the Irrigation Water Control in the Cultivation of Rice Plants (수도작에 있어서 물관리에 대한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.2
    • /
    • pp.1193-1199
    • /
    • 1966
  • More stable and higher yields in rice paddy depend mainly upon an adequately balanced supply of water for higher yield. Rice paddy is supplied naturally by rainfall but inevitably requires artificial supplenental irrigation for higher yields. Even though it may be true that the water requirement of rice plants is generally higher than those of other crops, the submerged condition is not necessarily required for rice. The moisture requirements of rice vary according to its growing stages and it is possible to increse the irrigation efficiency by means of lessening the loss due to percolation and evapolation in the field. This experiment was conducted on the effect of the various amount of water supply and different irrigation periods for yield and yield components, and was carried out to find out the most suitable irrigation method and to increase the irrigation efficiency for higher yields in rice paddy. Randomized block design with 3 replications was employed where the 3 levels of the amount of irrigation water; (120% moisture contents), unirrigated (90~100%) and more un irrigated candition (80~90% moisture content), and levels of the various irrigation periods; usual, initial, intermediate and final periods, being treated. The results obtained in this experiment are as follows: 1. As for the physical and chemical and soil properfies, and other characteristics, there are no differences among the treatments enough to be effective for the growth of rice plants. 2. Culm length was measured after harvest as shown in table 2. 3. Difference of the amount of irrigation water did not change the culm length and ear length, however it also indicated more apparent increase in final treatment plots thatn that of usual. 3. No difference in the number of ears and number of ears pers per hill was founded treatments both in the difference of water supply and in the various irrigation periods. 4. There is no difference in the maturing rate and 1000 grains weight. 5. The number of panicles and grains and more increased in 80~100% moisture contents soil than those of 120%. and it shows in un irrigated plots, more irrigated plots and control plots in turn. Other wise according to the period\ulcorner of irrigation the trend is appeared in turn initial, usual, final and intermediate treatments.6. Yield as shown in table 7. 8 was more increased in unirrigated plots(90~IOO% moisture content) than the control plots (120% moisture content) by up to 8.2% and also 3. 2% in more unirrigated plots than that of control by periods is shown: usual plots final, initial, inter mediate treatment plots in turn. 7. The above resutts lead to the conclusion that no remarkable, differences in yields and soil properties are made by the unirrigation. However, it is apparent that this treatment has .some advantages in the points that one could spare the amount of water supply for irrigation with more increase in yield. In addition, a higher temperature and a brisk oxygen supply would be possible throug h this treatments. Accordingly, these treatment would be a more reasonable and economical cultivation method of rice for the better harvest.

  • PDF

Estimation of Agricultural Reservoir Water Storage Based on Empirical Method (저수지 관리 관행을 반영한 농업용 저수지 저수율 추정)

  • Kang, Hansol;An, Hyunuk;Nam, Wonho;Lee, Kwangya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • Due to the climate change the drought had been occurring more frequently in recent two decades as compared to the previous years. The change in the pattern and frequency of the rainfall have a direct effect on the farming sector; therefore, the quantitative estimation of water supply is necessary for efficient agricultural water reservoir management. In past researches, there had been several studies conducted in estimation and evaluation of water supply based on the irrigational water requirement. However, some researches had shown significant differences between the theoretical and observed data based on this requirement. Thus, this study aims to propose an approach in estimating reservoir rate based on empirical method that utilized observed reservoir rate data. The result of these two methods in comparison with the previous one is seen to be more fitted for both R2 and RMSE with the observed reservoir rate. Among these procedures, the method that considers the drought year data shows more fitted outcomes. In addition, this new method was verified using 15-year (2002 to 2006) linear regression equation and then compare the preceeding 3-year (1999 to 2001) data to the theoretical method. The result using linear regression equation is also perceived to be more closely fitted to the observed reservoir rate data than the one based on theoretical irrigation water requirement. The new method developed in this research can therefore be used to provide more suitable supply data, and can contribute to effectively managing the reservoir operation in the country.

Securing Inflows to Reservoir with Low Ratio of Watershed to Paddy Field Areas by Operating Outside Diversion Weir (유역외 보의 연계운영에 의한 유역배율이 작은 저수지의 유입량 확보 가능성)

  • Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • This study was performed to ascertain the possibility of securing inflows to reservoir with low ratio of watershed to paddy field areas by outside diversion weir. The case of Maengdong reservoir and Samryong diversion weir was selected. Most of inflows to Maengdong reservoir with watershed area of $7.06\;km^2$ and total storage capacity of $1,269{\times}10^4\;m^3$ are filled with intake water from outside Samryong diversion weir. Only using water storage data in Maengdong reservoir from 1991 to 2009, the range of water intake in Samryong diversion weir to Maengdong reservoir was optimized to 0.135~30 mm/d, from which water intake to Maengdong reservoir was $1,672.9{\times}10^4\;m^3$ (70.1 %) and downstream outflow to Weonnam reservoir was $714.4{\times}10^4\;m^3$ (29.9 %). The parameters of DAWAST model for reservoir inflow were determined to UMAX of 313.8 mm, LMAX 20.3 mm, FC 136.8 mm, CP 0.018, and CE 0.007. Inflows to Maengdong reservoir were $427.1{\times}10^4\;m^3$ (20.3 %) from inside watershed, and $1,672.9{\times}10^4\;m^3$ (79.7 %) from outside. Paddy irrigation water requirements were estimated to $1,549{\times}10^4\;m^3$ on annual average. Operation rule curve was drawn by using daily inflow and irrigation requirement data. By securing the amount of inflow to Maengdong reservoir to about 80 % from outside Samryong diversion weir, water supply capacity for irrigation of $1,549{\times}10^4\;m^3/yr$ was analyzed to be enough. Additional water supplies for instream flow were analyzed to $1,412\;m^3/d$ in normal reservoir operation, $36,000\;m^3/d$ in withdrawal limit operation by operation rule curve from October to March of non irrigation period.

Water Requirement and Water Quality in the Paddy Plot Irrigated by Pipelines With an Automatic Hydrant (관수로 자동급수전 논에서의 용수량과 수질 -충북 보은군 학림 관수로 지구를 대상으로-(지역환경 \circled3))

  • 오광영;김진수;김선종;김영화
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.629-636
    • /
    • 2000
  • In this study, we investigated the characteristics of labor of water management and maintenance, water requirement, water quality(T-N, T-P, COD) in the paddy plot irrigated by pipeline with two types of hydrants: automatic and manual. The automatic hydrant have been introduced to the paddy field to save water and reduce the labor for water management. The automatic hydrant is automatically opened and closed according to the water depth of a paddy plot. The automatic hydrant generally developed more troubles than the manual hydrant. The water requirements are 2.7mm/d for the automatic hydrant plot and 17.6mm/d for the manual hydrant plot. The concentrations of pollutants in the two plots are higher in the ponded water than in the irrigation water and are highest after fertilizer application.

  • PDF

Climate Change Impacts on Paddy Irrigation Requirement in the Nakdong River Basin (기후변화가 낙동강 권역의 논 관개용수 수요량에 미치는 영향)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • The impacts of climate change on paddy irrigation requirements for Nakdong river basin in Korea have been analyzed. The HadCM3 model outputs for SRES A2 and B2 scenarios and International Water Management Institute $10'{\times}10'$ pixels observed data were used with kriging method. Maps showing the predicted spatial variations of changes in climate parameters and paddy irrigation requirements have been produced using the GIS. The results showed that the average growing season temperature was projected to increase by $2.2^{\circ}C$ (2050s A2), $0.0^{\circ}C$ (2050s B2), $3.7^{\circ}C$ (2080s A2) and $2.9^{\circ}C$ (2080s B2) from the baseline (1961-1990) value of $21{\circ}C$. The average growing season rainfall was projected to increase by 15.2% (2050s A2), 24.2% (2050s B2), 41.4% (2080s A2) and 16.7% (2080s B2) from the baseline value of 900 mm. Average volumetric irrigation demands were projected to decrease by 3.7% (2050s A2), 7.0% (2050s B2), 10.2% (2080s A2) and 1.4% (2080s B2) from the baseline value of $1.25{\times}10^9\;m^3$. These results can be used for the agricultural water resources development planning in the Nakdong river basin for the future.

Studies on the Effects of Variation Methods of Rotation Irrigation Systems Affecting on the Growth, Yield of Rice Plant and its Optimum Facilities (윤환관개의 방법의 차이가 수도생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구)

  • 이창구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.2 no.5
    • /
    • pp.4-18
    • /
    • 1969
  • This experiment was conducted, making use of the "NONG-RlM 6", a recommended variety of rice for year of 1968. Main purposes of the experiment are to explore possibilities of: a) ways and means of saving irrigation water and, b) overcoming drought at the same time so that an increased yield in rice could be resulted in. Specifically, it was tried to determine the effects of the circulation irrigation method combined with differentiated thickness of lining upon the growth and yield of rice. Some of the major findings are summarized in the following. 1) The different thicknesses show a significant relationship with the weight of 1,000 grains. In the case of 9cm-lined plot, the grain weight is 23.5 grams, the heaviest. Next in order are 3cm-lined plot, 6cm-lined plot, control plot, and wheat straw lined-plot. 2) In rice yield, it is found that there is a considerably moderate significant relationship with both the different thickness of lining and the number of irrigation, as shown in the table. 3) There is little or no difference among different plots in terms of a) physical and chemical properties of solid, b) quality of irrigation water, c) climatic conditions, and rainfalls. 4) It is found that there is a significant relationship between differences in the method of rotation irrigation and the number of ears per hill. The plot irrigated at an interval of 7 days shows 17.4 ears and the plot irrigated at an interval of 6 days, 16.3. 5) In vinyl-treated plots, it is shown that both yield and component element are greatest in the case of the plot with hole of 3$cm/m^2$. Next in order are; the plot with a hole of 2$cm/m^2$; the plot with a hole of 1$cm/m^2$. In the case of the plot with no hole, it is found that both yield and component elements are decreased as compared to the control plot. 6) The irrigation water requirement is measured for the actual irrigation days of 72 which are the number subtracted the days of rainfall of 30 from the total irrigation days of 102. It is found that the irrigation water requirement for the un control plot is 1,590 mm, as compared to 876 mm (44.9% saved) for the 9cm-lined plot, 959mm(39.7% saved) for the 6cm-lined plot, 1,010mm (36% saved) for the 3cm-lined plot, and 1,082mm (32% saved) for the wheat straw lined plot. In the case of the rotation irrigation method, it is found that the water requirement for the plot irrigated at an interval of 8 days is 538mm (65.3% saved), as compared to 617mm (61.1% saved) for the plot irrigated at an interval of 7 days, 672mm (57.7% saved) for the plot irrigated at an interval of 6 days, 746mm (53.0% saved) for the plot irrigated at an interval of 5 days, 890mm (44.0% saved) for to plot irrigated at an interval of 4 days, and 975mm (38.6% saved) for the plot irrigated at an interval of 3 days. 7) The rate of evapo-transpiration is found 2.8 around the end of the month of July, as compared to 2.6 at the begining of August, 3.4 around the end of August, and 2.6 at the begining of September. 8) It is found that the saturaton quantity of 30 mm per day is decreased to 20mm per day through the use of vinyl covering. 9) The husking rate shows 75 per cent which is considered better.

  • PDF