• Title/Summary/Keyword: Irrigation treatments

Search Result 227, Processing Time 0.022 seconds

Reuse of Reclaimed Water for Irrigation on Paddy Rice Culture and Its Effect

  • Chun G. Yoon;Ham, Jong-Hwa;Jeon, Ji-Hong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.14-24
    • /
    • 2002
  • The effect of reclaimed water irrigation on paddy rice culture was evaluated by pilot study at the experimental field of Konkuk University in Seoul, Korea. The sewage was treated by constructed wetland system, and its effluent was used as irrigation water for four treatments and one control plots with three replications. Irrigation of reclaimed water onto paddy rice cultures did not adversely affect the growth and yield of rice. Instead, experimental rice plots of reclaimed water irrigation displayed about 10 to 50% more yield on average than controls. This implies that reclaimed water irrigation might be beneficial rather than harmful to rice culture as long as the sewage is treated adequately and used properly. The amount of irrigation water had little effect on experimental rice cultures, but its strength was important. The strength of treated sewage was not a limiting factor in this study, and no lodging was observed even with a relatively high nitrogen concentration (up to 160mg/L). In general the paddy soil was not affected by reclaimed water irrigation. However, there was an indication that continuous irrigation with high strength of reclaimed water might cause salt accumulation in the soil. Supplemental use of reclaimed water with existing sources of irrigation water is recommended rather than irrigation with a single source of reclaimed water. Overall, the results demonstrated that reclaimed water could be reused as a supplemental source of irrigation water for paddy rice culture without causing adverse effects as long as it is properly managed. For full-scale application, further investigation should be done on environmental risks, tolerable water quality, and fraction of supplemental irrigation.

Effect of Different Irrigation Period on the Growth of Greenary Sedum Mat (삽목을 이용한 녹화용 Sedum 매트의 관수 간격에 따른 생육 특성)

  • Lee, Jong-Suk;Kim, Ji-Yeon;Yoon, So-Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.54-60
    • /
    • 2007
  • This study was conducted to investigate growth characteristics of irrigation period of greenary mats focused on management as a material to apply on rooftop. Using Sedum kamtschaticum, Sedum takesimense, Sedum reflexum, Sedum album and Sedum burrito greenary mats were made. The irrigation periods were every 3 days, 7 days, and 10 days after made each greenary mats.1. All treatments on survival ratio of 5 Sedum species were over 96%. Especially, new individuals were emerged from naturally detached leaves. 2. Growth of S. kamtschaticum, S. takesimense, S. reflexum were good on 7 day irrigation treatment. 3. The highest covering ratio of S. burrito was 3 day irrigation treatment, and the hightest of the others were 7 day irrigation treatment. Considerations for species selection, mixture, ratio and management were obtained from this study.

Water-Saving Culture under Ridge Direct Seeding on Dry Paddy of Rice (벼 휴입건답직파 재배에서 합리적인 절수 관개방법)

  • Choi, Weon-Young;Park, Hong-Kyu;Kim, Sang-Su;Yang, Won-Ha;Shin, Hyun-Tak;Cho, Soo-Yeon;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.706-711
    • /
    • 1997
  • Low supply of water is generally the most serious factor limiting rice production. The experiment was conducted to identify the reasonable method for minimum irrigation under ridge direct seeding on dry paddy, at National Honam Agricultural Experiment Station, RDA in 1996. The results showed that the reduction ratio of irrigation water was high in order of furrow irrigation at 15-day>furrow irrigation at 10-day>flooding irrigation at 10-day>, and furrow irrigation at 5-day intervals. However, milled rice yield was high in the furrow irrigation at 5-day intervals and in flooding irrigation at 10-day intervals due to high ripened grain as compared with other treatments indicating two treatments were the most reasonable irrigation methods in terms of saving the labor cost and water supply as well as the admittable yield performance.

  • PDF

The Effect of Fertigation Setting Point on the Growth and Fruit Quality of Sweet Pepper (Capsicum annuum L.) (관비재배에서 토양수분이 착색단고추의 생육과 품질에 미치는 영향)

  • 유성오;배종향
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.102-106
    • /
    • 2004
  • Objective of this research was to investigate the effect of fertigation setting point such as -5, -10, -20, and -30 ㎪ on the growth and fruit quality of sweet pepper (Capsicum annuum L.) in greenhouse culture. The net $CO_2$ assimilation and transpiration rate were the lowest in the treatment of -30㎪. The pH and EC in soil solution were not severly affected by irrigation setting point and no statistical differences were observed among treatments of irrigation setting point tested. The N content of above ground plant tissue was the lowest in the treatment of -30 ㎪ and those of K, Ca, and Mg were the highest in the treatment of -10 ㎪. But that of P did not show statistical differences among treatments tested. As the fertigation setting point was getting low, the growth decreased at 60th day after planting, while there were no differences among treatments at 210th day after planting. The fruit quality except sugar contents did not show differences among treatments, but sugar contents was the highest in the treatment of -30 ㎪ with $8.0^{\circ}$Brix. Above results indicated that fertigation setting point should be in the range from -10 ㎪ to -20 ㎪ to ensure good crop growth and fruit quality in sweet pepper production.

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

Influences of Chinese Cabbage Growth and Soil Salinity to Alternative Irrigation Waters (대체관개 용수에 의한 배추생육 및 토양 염류도에 미치는 영향)

  • Shin, Joung-Du;Park, Sang-Won;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Objective of this experiment was to investigate the growth effects of Chinese cabbage and soil salinity to alternative irrigation waters for drought periods. The treatments were consisted of the discharge water from industrial wastewater treatment plant (DIWT), the discharge water from municipal wastewater treatment plant (DMWT) and ground water as the control. For the chemical compositions of alternative water, it appeared that concentrations of the $Ni^+$ and SAR values in DIWT were over the reuse criteria of other countries for irrigation, but CODcr concentration in DMWT was higher than the reuse criteria for agricultural irrigation. According to classification of water by $EC_i$ value, DIWT and DMWT are ranged from 0.7 to $2.0dS\;m^{-1}$, slight salinity. Average harvest indexes were 0.64 for DIWT and 0.63 for DMWT as compared to 0.61 of the control regardless of irrigation periods. SAR value in soil was increased with prolonging the irrigation periods at head forming stage, but not much difference except for 30 days of irrigation period at harvesting time for DIWT. However, it was not much difference along with irrigation periods through the growth stages for DMWT as compared with the groundwater. At harvesting time, average $EC_e$ for the soil irrigated with alternative agricultural waters was $0.017dS\;m^{-1}$ for its DIMT and $0.036dS\;m^{-1}$ for its DMWT as compared to $0.013dS\;m^{-1}$ of its groundwater as the control. For $NH_4-N$ concentrations, it observed that there were no differences among the treatments with different irrigation periods at head forming stage in soil after irrigation. Also, $NO_3-N$ concentration in soil was increased up to 20 days after irrigation, and then decreased at 30 days after irrigation with DMWT at head forming stage. The $Ni^+$ concentration in upper layer soil (0-15 cm) irrigated with DIWT was increased with prolonging the irrigation period at head forming stage, but it was dramatically decreased and almost constant in all the treatments at harvesting time. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant for 20 days after transplanting to drought periods with cultivating the Chinese cabbage.

Improvement of Water and Fertilizer Use Efficiency by Daily Last Irrigation Time for Tomato Perlite Bag Culture (토마토 펄라이트 자루재배에서의 관수마감시각에 따른 용수이용효율 및 비료이용효율 증진)

  • Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.408-412
    • /
    • 2009
  • Daily last time of irrigation in perlite bag culture was investigated to get high water use efficiency (WUE) and fertilizer use efficiency (FUE) and also sustain high productivity for tomato. The water content in the substrate was higher as the last time of irrigation was later from 4 to 1hour before sunset. The growth were not significantly different in all treatments. The marketable yield was the highest in treatments of 1 or 2hours before sunset and the lowest in treatment of 4hours. In the result to investigate for 128days WUE and FUE were the lowest in treatment of 1hour before sunset but the highest in treatment of 3hours before sunset. In the conclusion, it looks best to end irrigation 2~3hours before sunset in the aspects of plant growth, yield, WUE, and FUE.

Effects of Saline Irrigation Water on Lettuce and Carrot Growth in Protected Cultivation (관개용수 염도수준에 따른 시설 상추 및 당근의 생육 영향 분석)

  • Jeon, Jihye;Jeong, Hanseok;Kim, Hakkwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.113-120
    • /
    • 2015
  • The objectives of this study were to monitor and assess the effects of saline irrigation water on lettuce and carrot growth in protected cultivation. One control and 4 treatments with three replications, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring results showed that the use of irrigation water containing above a certain level of salinity was found to cause excessive accumulation of salts in the soil as saline irrigation water increased electrical conductivity (EC) and sodium ($Na^+$) content in both lettuce and carrot soil samples, while tap water irrigation used as control decreased the salinity in the samples. The salinity higher than the threshold level of irrigation water was found to reduce the yields of lettuce and carrot, while in less than the threshold level the higher the salinity of the irrigation water increased the yields. The salinity of the irrigation water also appeared to increase the internal salinity of the plant as the $Na^+$ content in plant increased as the salinity of irrigation water increase. Increased $Na^+$ content was analyzed to be able to increase the sugar content in carrot. This study could contribute to suggest water quality criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Risk assessment of wastewater reuse for Irrigation water (하수처리수의 관개용수 재이용을 위한 위해성 평가)

  • Han, Jung-Yoon;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Jang, Jae-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.661-666
    • /
    • 2005
  • Wastewater reuse are exposed public health risk by pathogens. Therefore, this study was examined for microbial risk assessment after irrigation as treated wastewater in paddy rice plots. Five treatments were used: biofilter effluent, UV disinfected water, pond treatment, wetland treatment and conventional irrigation water. Risk assessment was calculated based on the beta-Poisson model by concentration of E. coli from 2003 to 2005. Monte-Carlo simulation (n=10,000) was used to estimate the risk characterization of uncertainty. The risk range was from $10^{-5}$ to $10^{-8}$ except biofilter effluent was $10^{-4}$ in June. The USEPA(1992) has recommended that risk of < $10^{-4}$ is acceptable level of safety for potable waters. In 2005, risk value was lower than 2003, 2004 because of the first irrigation for plowing water is lower E. coli concentration used tap water. It is shown that the first irrigation water quality was important for wastewater irrigation in paddy. UV disinfection and natural treatment used pond and wetland were thought to be an effective for wastewater reuse.

  • PDF

Effect of Green Manure Hairy vetch on Rice Growth and Saving of Irrigation Water (녹비작물 헤어리베치가 벼 생육 및 관개량 절약에 미치는 효과)

  • Jeon, Weon-Tai;Hur, Seung-Oh;Seong, Ki-Yeong;Oh, In-Seok;Kim, Min-Tae;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Green manure crops are primarily used to reduce the application of chemical fertilizers. In this study, a two-year field experiment was conducted to evaluate the effects of green manure hairy vetch on rice growth and saving of irrigation water. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) from 2008 to 2009 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Hairy vetch as a green manure crop was incorporated in soil for rice cultivation. Chemical fertilizers had not been applied to hairy vetch plot. Treatments included once irrigation (OI) per week and conventional irrigation (CI). In 2008, the water use efficiency of OI increased by 46% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 38 days after rice transplanting). In 2009, the water use efficiency of OI increased by 61.3% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 30 days after rice transplanting). Soil physical properties such as bulk density, soil porosity ratio and glomalin contents were improved by the incorporation of hairy vetch. The rice yield of OI water management was not significantly different from those of CI water management by hairy vetch application both years. These results suggest that the OI water management with hairy vetch incorporated in soil for rice cultivation can be used in rice fields to reduce the amount of irrigation water and chemical fertilizer.