• Title/Summary/Keyword: Irrigation dams

Search Result 40, Processing Time 0.029 seconds

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

Survey and Analyses of Farming Condition and Nonpoint Source Pollution in the Flood Control Area of the Multi-purpose Dams (다목적댐 홍수조절용지 내 경작실태 및 비점원오염부하량 조사 분석)

  • Chung Ji-Eun;Chung Sang-Ok
    • KCID journal
    • /
    • v.10 no.1
    • /
    • pp.44-52
    • /
    • 2003
  • This study surveyed farming condition and the effects of nonpoint source pollution loading by cultivating in the flood control area of multi-purpose dams. According to the multi-purpose dam management regulation, cultivation can be permitted between norma

  • PDF

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF

Heightening of the Seoam Dam Towards Sustainable Rural Development and Environmental Conservation (서암저수지 둑높이기 사업에 따른 지속가능한 지역 발전과 환경 보전 효과 연구)

  • Park, Sang Hyun;Lee, Geun Suk
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.30-39
    • /
    • 2012
  • In recent years, there have been a lot of severe flood and drought disasters and the rural environment have been worsened due to rapid industrialization and urbanization in the river basins of Korea. To prevent such disasters and to improve environment in the era of climate change, Korean Government carried out 110 projects to heighten irrigation dam in the rural area. The study has been carried out to evaluate the heightening work of the irrigation dam for the supply of reserved water and to derive optimal scheme to allocate the water resource for irrigation, domestic demand and environmental conservation as well as to contribute for the rural development in sustainable way. The study is focused on the Seoam Irrigation Dam which has been constructed in 2005 to be connected with the new Gami Reservoir which has been constructed since 2010. In addition, it was studied the contribution effect of the reservoirs for the adjacent comprehensive rural development projects which have been executed by local government. In the study, the principles and visions of sustainable development which have been derived by International Commission on Irrigation and Drainage is applied to estimate the sustainability of the irrigation dams in line with the adjacent comprehensive rural development projects. The project is estimated that the water resource in the reservoirs shall be used integratedly in cooperation with various stakeholders not only to conserve water environment but also to increase productivity of agricultural goods and ecological tour in the rural area.

  • PDF

Technical feasibility study for power generation from a potential mini hydro site nearby Shoolini University

  • Pundir, Anil;Kumar, Anil
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Small Hydro-Power (SHP) is an environmental friendly technology. Usually hydro power generation projects are viewed as constructing large dams and reservoirs but available new research and engineering techniques have helped hydro power generation without large dams and without large reservoirs. In India, there are several water installations, irrigation dams, canals, streams or running rivers not tapped to generate power. In these cases the existing system and facilities can help in generating power with less investment and time. This area is yet unexplored. Harnessing a stream for hydroelectric power is a major undertaking for the energy crises and the global issues to go green. In this technical note a potential site for mini hydro power plant nearby Shoolini University is identified and examined for the economic feasibility.

A Study of Operation Standard and Method of Small Dams (소규모 댐의 운영기준 및 기법 연구)

  • Kim, Phil-Shik;Kim, Sun-Joo;Lee, Joo-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.260-265
    • /
    • 2005
  • The purpose of this study is to established a storage management method and operation standard for irrigation dams occupying the largest portion of small dams using storage management system. The system can be applied to seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method and operation standard are capable of analyzing additional available water, considering the water demand and supply of basin actually. It can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space.

  • PDF

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.