• Title/Summary/Keyword: Irrigation dam

Search Result 102, Processing Time 0.027 seconds

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF

A Study on the Physical Characteristics of Irrigation Reservoirs in Korea (우리나라 관개용 흙댐 저수지의 외형적 제특성에 관한 연구)

  • 정두희;안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.29-37
    • /
    • 1983
  • This study was carried out not only to prepare available materials that can be utilized in basic planning of irrigation reservoirs, but also to contribute to the study on countermeasures for reasonable irrigation water development in Korea in the future, through the investigation for the structural characteristics of reservoirs and their change trend by an epoch. During this study 123 sites of sample reservoirs were analysed in their dimensions of physical constituent factors. The physical characteristics and their change trends revealed by this study are summarized as follows: 1. For the irrigation earth dam in Korea the correlation between dam volume (v) and dam height & length (H$^2$L) can be described as the formula of v=1. 434H2L~17, 300 (r=0. 933), from which embankment amount is assumed to be quickly estimated under determined dam height and length of the proposed reservoir. 2. The ratio of dam volume to dam height & length ranges approximately from 0.5 to 3 (1.7 in average), that of storage capacity to dam volume 2 to 10 (8.4 in average), that of irrigation area to full water surface area 5 to 20 (13 in average) and that of catchment area to irrigation area 2 to 5 (4 in average). Though correlation between dam volume and dam height & length is high, that between others is relatively low. 3. Average storage depth ranges approximately from 4m to l0m (6.6m in average), unit storage capacity 0. 4m to 0. 8m (0.54 in average) and shape factor of dam 5 to 20 (10.5 in average). 4. The more recently planned the reservoirs were, the less storage capacity, dam volume, full water surface and dam shape factor they have. 5. The more recently planned the reservoirs were, the larger storage depth and unit storage capacity they have.

  • PDF

Schematic Development of Risk Analysis for Dam Safety (저수지 안전관리를 위한 위험도 해석의 필요성과 도입방안)

  • Heo, Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.11-20
    • /
    • 2016
  • Korea has 17,500 irrigation dams and facing variety of causes that jeopardize dam safety. With limited resources available to manage large inventory, a portfolio risk analysis application method for numerous irrigation dam safety is essential. The purpose of this study is to find an optimum way to adopt the risk analysis to the large number of irrigation dams in Korea and to propose the portfolio risk analysis process for irrigation dams. In this study, the necessity of the risk analysis for reservoirs safety has been suggested and a phased process using pre-screening and screening methodology has been proposed. This proposed procedure will help to effectively introduce the risk analysis for reservoirs safety in Korea.

Heightening of the Seoam Dam Towards Sustainable Rural Development and Environmental Conservation (서암저수지 둑높이기 사업에 따른 지속가능한 지역 발전과 환경 보전 효과 연구)

  • Park, Sang Hyun;Lee, Geun Suk
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.30-39
    • /
    • 2012
  • In recent years, there have been a lot of severe flood and drought disasters and the rural environment have been worsened due to rapid industrialization and urbanization in the river basins of Korea. To prevent such disasters and to improve environment in the era of climate change, Korean Government carried out 110 projects to heighten irrigation dam in the rural area. The study has been carried out to evaluate the heightening work of the irrigation dam for the supply of reserved water and to derive optimal scheme to allocate the water resource for irrigation, domestic demand and environmental conservation as well as to contribute for the rural development in sustainable way. The study is focused on the Seoam Irrigation Dam which has been constructed in 2005 to be connected with the new Gami Reservoir which has been constructed since 2010. In addition, it was studied the contribution effect of the reservoirs for the adjacent comprehensive rural development projects which have been executed by local government. In the study, the principles and visions of sustainable development which have been derived by International Commission on Irrigation and Drainage is applied to estimate the sustainability of the irrigation dams in line with the adjacent comprehensive rural development projects. The project is estimated that the water resource in the reservoirs shall be used integratedly in cooperation with various stakeholders not only to conserve water environment but also to increase productivity of agricultural goods and ecological tour in the rural area.

  • PDF

Operation Strategy of Groundwater Dam Using Estimation Technique of Groundwater Level (지하수위 예측기법을 활용한 지하댐 운영전략)

  • Bu, Seong-An;Sin, Sang-Mun;Choe, Yong-Seon;Park, Jae-Hyeon;Jeong, Gyo-Cheol;Park, Chang-Geun
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.236-245
    • /
    • 2006
  • Among a number of methodologies for developing groundwater supply to overcome drought events reported in the research community, an accurate estimation of the groundwater level is an important initial issue to provide an efficient method for operating groundwater. The primary objective of this paper is to develop an advanced prediction model for the groundwater level in the catchment area of the Ssangcheon groundwater dam using precipitation based period dividing algorithm and response surface methodology (RSM). A numerical example clearly shows that the proposed method can effectively forecast groundwater level in terms of correlation coefficient ($R^2$) in the upstream part of the Ssangcheon groundwater dam.

  • PDF

Development of National Life Cycle Inventory Database on Irrigation Water by Agricultural Dam (관개용 저수지 농업용수의 국가 전과정 목록분석 데이터베이스 구축)

  • Kim, Young-Deuk;Park, Pil-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • The objective of the study is to develop life cycle inventory (LCI) database of dam, a major facility for irrigation water supply. The types of database developed are three out of nine dams according to the size of the wate r storage capacity: two kinds larger than 500,000 $m^3$ depending on gate for discharging (Type 1) and the other dam smaller than 500,000 $m^3$ (Type 2). According to the LCI analysis, type 1 larger than 500,000 $m^3$ storage capacity with gate has the lowest environment impact in the 6 impact categories. The impact of the type 1 accounts for 7~35 % of the type 2 for supplying irrigation water. Comparing with the environment impacts of water for other uses such as drinking and industrial water, the impacts of 1 $m^3$ irrigation water supply is 4~45 % of the one for industrial water supply and 1~16 % of the drinking water's. The three types of LCI DB on the irrigation water by dams will be useful in the application of Life Cycle Assessment in agricultural products and environmental labelling including carbon footprint since it is complied to the guidelines of LCI DB constr uction issued by Ministry of Environment and Ministry of Knowledge Economy.

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF

Securement of Upland Irrigation Water in Small Dams through Periodical Management of Storage Level (기간별 저수 관리를 통한 소규모 댐의 밭 관개용수 확보)

  • Kim, Sun-Joo;Lee, Joo-Yong;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.3-12
    • /
    • 2005
  • The objective of this study is securement of upland irrigation water using storage level management of small dams. However, it is not new development of water resources but securement of water using storage level management of existing dam. This study has enhanced the water utilization coefficient of dam, after extra available water had been calculated by application of periodical management storage level and this water is used to other water like the upland irrigation water demand. As the result of application, it can secure extra available water except the water requirement. Minimum extra available water except flood is about $20,000,000\;m^3$ and crop irrigation water demand of 10yr frequency is about $2,033,000\;m^3$ in Seongju. The utilization of crop irrigation water can be possible. And extra available water is about $3,102,000\;m^3$ in 2000, $1,959,000\;m^3$ in 2001 except flood period and crop irrigation water demand of 10yr frequency is about $2,272,000\;m^3$ in Donghwa. It is judged that extra available water cannot be used to crop irrigation water during the dry season in Dongwha. Consequently, when management storage level is determined and more efficient use of water is gotten like this study, water utilization coefficient will be enhanced.

Estimation of the Expected Socio-economic Benefits of the Largescale Comprehensive Agricultural Development Project and Jointcost Allocation -In the Case of Kumgang Project Area- (대단위 농업종합개발사업의 사회경제적 기대편익 추정과 결합비용의 배분 -금강지구를 중심으로-)

  • Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.159-176
    • /
    • 1996
  • This study is aimed at reviewing the methods of joint cost allocation and allocating the joint cost of estuary dam with specially repect to Kumgang Large-scale Agricultural Comprehensive Development Project. Apart from the water resource development project propelled by Water Resource Development Corporation in connection with Law of Multipurpose Dam Development, the Largescale Comprehensive Agricultural Development Projects couldn't ins-titutionally be carried out cost allocation of common facilities, even though it were concerned with irrigation, municipal and industrical water supply, flood control, sightseeing and industrial zone development components. To decrease farmer's burden of the project costs and, operation and maintenance costs, the joint costs of common facilities like estuary dam included in agricultural development projects have to be allocated by suitable method as alternative cost-remaining benefit method and the analytical activity should be supported by revising the concerned laws as Rural Development and Promotion and, Rural Rearrangement conpatible with the law for multipurpose dam development. Kumgang Agricultural Comprehensive Development Project was selected as a case study for the estimation of socio-economic benefits by project components and joint cost allocation of the estuary dam. The main results of the study are as follows; Joint cost allocation and unit charges by components 1. The project area will be 25,554ha with total project cost of 624,860 million won including the estuary dam cost of 120,843 million won. The project costs were ex-pressed by 1994 constant price. 2. Total quantity of water was estimated 365 million tons which were consisted of 245 million tons for irrigation, 73 million tons for municipal water and 47 million tons for industrial water. 3. The rates of joint cost allocation were amounted to 34.2% for agriculture, 2.5% for sightseeing, 45.7% for transportation, 11.8% for M & I water supply and 5.8% for flood control respectively. 4. The unit financial charges by project components were estimated at 7.88 won per ton for irrigation, 16.11won for M & I water, 1,686won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The financial charges using straitline method for depreciation were estimated at 7.88won per ton for irrigation, 9.12won per ton for M & I water, 624won per vehicle one pass for transportation and 331won per Pyeong for sightseeing area. 5. The unit economic charges by project components were estimated at 21.1 won per ton for irrigation, 15.2won for M & I water, 977won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The economic charges using straitline method for depreciation were estimated at 11.72won per ton for irrigation, 8.61won per ton for M & I water, 331won per vehicle one pass for transportation. Policy recommendation 1. The unit operation and maintenance costs for irrigation water in the paddy field couldn't be imposed as the water resource cost untreated. 2. The dam costs including investment cost and O & M cost, as a joint cost, had to be allocated by each benefited components as transportation, M & I water supply, flood control, irrigation and drainage, and sightseeing. But the agricultural comprehensive project have been dealt as an irrigation project without any appraisal socio-economic benefits and any allocating the joint cost of estuary dam. 3. All the associated project benefits and costs must be evaluated based on accounting principle and rent recovery rate of the project costs and O & M costs should be regulated by the laws concerned. 4. The rural development and promotion law and rural rearrangement law have to be revised comprising joint cost allocation considering free rider problems. 5. The government subsidy for the agricultural base development project has to be covered all the project costs. In case of common facilities representing joint cost allocation problems, all the allocated casts for other purposes like transportation and M & I water supply etc. should be recovered for formation in investment fund for agricultural base development and to procure O & M costs for irrigation facilities.

  • PDF