• Title/Summary/Keyword: Irrigation Simulation

Search Result 134, Processing Time 0.03 seconds

Simulation of Agricultural Water Supply Considering Yearly Variation of Irrigation Efficiency (연단위 관개효율 변화를 고려한 관개지구 용수 공급량 모의)

  • Song, Jung Hun;Song, Inhong;Kim, Jin Taek;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.425-438
    • /
    • 2015
  • The objective of this study was to evaluate simulation of agricultural water supply considering yearly variation of irrigation efficiency. The water supply data of the Idong reservoir from 2001 through 2009 was collected and used for this study. Total 6 parameters including irrigation efficiency (Es), drainage outlet height, and infiltration, were used for sensitivity analysis, calibration, and validation. Among the parameters, the Es appeared to be the most sensitivity parameter. The Es was calibrated on a yearly basis considering sensitivity and time-varying characteristic, while other parameters were set to fixed values. The statistics of percent bias (PBLAS), Nash-Sutcliffe efficiency (NSE), and root means square error to the standard deviation of measured data (RSR) for a monthly step were 2.7%, 0.93, and 0.26 for the calibration, and 3.9%, 0.89, and 0.32 for the validation, correspondently. The results showed a good agreement with the observations. This implies that the modeling only with appropriate parameter values, apart from modeling approaches, can simulate the real supply operation reasonably well. However, the simulations with uncalibrated parameters from previous studies produced poor results. Thus, it is important to use calibrated values, and especially, we suggest the Es's yearly calibration for simulating agricultural water supply.

Optimal Operation of the Grouped Agricultural-Reservoirs (농업용 저수지군의 최적 운영)

  • 이기춘;최진규;이장춘;손재권
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.52-60
    • /
    • 1991
  • This study was conducted to investigate the appropriate operation method minimizing the deviation between irrigation water demand and release from the reservoirs, and the simulation technique was used in the operation model. This model was applied to the grouped reservoirs system consisted of Dongsang, Daia and Keungchun reservoirs and Eowoo-weir in Chonbuk FLIA district. The results obtained in this study are summarized as follows; 1.The area above the Eowoo weir point was divided into 6 small watersheds, and daily inflows from each watershed were calculated by Tank model. It showed that the average annual runoff ratio was 40-60% respectively. 2.Based on the Blaney-Criddle formula daily water requirement of Chonbuk FLIA irrigation area was estimated, mean water requirement for paddy field during the irrigation period was 818.lmm. 3.Using the basic data such as inflow and water demand, four different release types were selected. Through the simulated operation the difference between intake water required at Eowoo-weir point and release from the 3 reservoirs was estimated. The best result was obtained when Daia and Keungchun reservoirs are operated parallelly at fixed release ratio and the release of Dongsang reservoir was determined according to the storage of Daia reservoir.

  • PDF

Simulation of Stage-Storage Curve Function in Irrigation Reservoirs (저수지 내용적 곡선의 모의발생)

  • 김현영;윤인택;최용선;오수훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.73-80
    • /
    • 1995
  • The uses of stage-storage curve function are diverse in irrigation reservoirs. The curve functions would be used to determine the optimal size of spillway length and the inundation area above full water level based on the flood routing in reservoirs. In addition, the curve function would he used to transform the stage to the storage for the reservoir water management, in which the storage is the supply water. Besides those, the curve is necessary for the planning of dredging, the estimation of the effective and the dead storage, the drought management by reservoir, etc. The curve function data, however, are almost unavailable for these purposes. According to the statistics, about 74% of the 2, 900 resevoirs which are maintained by Farm Land Improvement Association have no more effective data. Therefore, the simulation of the curve function could be better alternative. The curve functions were simulated derivating the regression equations based on the basin relief ratio and the effective depth. The results of the verification show the enough reliability of the application to generate the curve function in some reservoirs which do not have the surveyed stage-storage data. Also, even though the averaged curve function would be applicated without the basin relief ratio data, the result shows that the simulated curve is closer to the real one than the linear function by only the existing effective storage data.

  • PDF

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

Water Balance Analysis of Pumped-Storage Reservoir during Non-Irrigation Period for Recurrent Irrigation Water Management (순환형 농업용수관리를 위한 농업용 저수지의 비관개기 양수저류 추정)

  • Bang, Na-Kyoung;Nam, Won-Ho;Shin, Ji-Hyeon;Kim, Han-Joong;Kang, Ku;Baek, Seung-Chool;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.1-12
    • /
    • 2020
  • The extreme 2017 spring drought affected a large portion of South Korea in the Southern Gyeonggi-do and Chungcheongnam-do districts. This drought event was one of the climatologically driest spring seasons over the 1961-2016 period of record. It was characterized by exceptionally low reservoir water levels, with the average water level being 36% lower over most of western South Korea. In this study, we consider drought response methods to alleviate the shortage of agricultural water in times of drought. It could be to store water from a stream into a reservoir. There is a cyclical method for reusing water supplied from a reservoir into streams through drainage. We intended to present a decision-making plan for water supply based on the calculation of the quantity of water supply and leakage. We compared the rainfall-runoff equation with the TANK model, which is a long-term run-off model. Estimations of reservoir inflow during non-irrigation seasons applied to the Madun, Daesa, and Pungjeon reservoirs. We applied the run-off flow to the last 30 years of rainfall data to estimate reservoir storage. We calculated the available water in the river during the non-irrigation season. The daily average inflow from 2003 to 2018 was calculated from October to April. Simulation results show that an average of 67,000 tons of water is obtained during the non-irrigation season. The report shows that about 53,000 tons of water are available except during the winter season from December to February. The Madun Reservoir began in early October with a 10 percent storage rate. In the starting ratio, a simulated rate of 4 K, 6 K, and 8 K tons is predicted to be 44%, 50%, and 60%. We can estimate the amount of water needed and the timing of water pump operations during the non-irrigation season that focuses on fresh water reservoirs and improve decision making for efficient water supplies.

Assessment of Future Agricultural Land Use and Climate Change Impacts on Irrigation Water Requirement Considering Greenhouse Cultivation (시설재배를 고려한 미래 농지이용 변화와 기후변화가 관개 필요수량에 미치는 영향 평가)

  • SON, Moo-Been;HAN, Dae-Young;KIM, Jin-Uk;SHIN, Hyung-Jin;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.120-139
    • /
    • 2020
  • This study is to assess the future agricultural land use and climate change impacts on irrigation water requirement using CLUE-s(Conversion of Land Use and its Effects at Small regional extent) and RCP(Representative Concentration Pathway) 4.5 and 8.5 HadGEM3-RA(Hadley Centre Global Environmental Model version 3 Regional Atmosphere) scenario. For Nonsan city(55,517.9ha), the rice paddy, upland crop, and greenhouse cultivation were considered for agricultural land uses and DIROM(Daily Irrigation Reservoir Operation Model) was applied to benefited areas of Tapjeong reservoir (5,713.3ha) for Irrigation Water Requirement(IWR) estimation. For future land use change simulation, the CLUE-s used land uses of 2007, 2013, and 2019 from Ministry of Environment(MOE) and 6 classes(water, urban, rice paddy, upland crop, forest, and greenhouse cultivation). In 2100, the rice paddy and upland crop areas decreased 5.0% and 7.6%, and greenhouse cultivation area increased 24.7% compared to 2013. For the future climate change scenario considering agricultural land use change, the RCP 4.5 and RCP 8.5 2090s(2090~2099) IWR decreased 2.1% and 1.0% for rice paddy and upland crops, and increased 11.4% for greenhouse cultivation compared to pure application of future climate change scenario.

Prediction of Nutrient Loading from Paddy Fields (II) - Model Application - (논에서의 영양물질 배출량 추정 (II) - 모형의 적용 -)

  • 김현수;정상옥;김진수;오승영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.106-115
    • /
    • 2002
  • The objective of this study was to evaluate the GLEAMS-PADDY model by applying it to estimate nutrients loading from paddy-field areas. Field data from Soro region of Chungbuk province during May to September 1999 were used for model application. Field data collected include the amounts of rainfall, irrigation water, drainage water, ET, and Percolation in hydrology Part. T-N and T-P concentrations in the rain water, irrigation water, ponded water, drainage water and percolated water were measured. The comparisons of observed and simulated water balance components and nutrient concentrations showed reasonably good agreements and the GLEAMS-PADDY model may be used to simulate nutrients loading from paddy fields. Futher research was suggested to include the erosion submodel in the GLEAMS-PADDY model to better simulate the nutrient behavior. In addition, the pesticide submodel also recommended to be included in order to simulate the various pesticide applied in paddy fields.

Development of Storage Management Method for Effective Operation of Small Dams (소규모 댐의 효과적 운영을 위한 저수관리 기법 개발)

  • Kim Phil-Shik;Kim Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

ESTIMATION OF DAM DISCHARGE FOR THE DOWN STREAM WATER QUALITY

  • Ha, Jin-Kyu;Hong, Il-Pyo
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.51-59
    • /
    • 2002
  • In recent years the human impact on the environment becomes increasing lift threatening, calls for the better management of resources. In field of water quality of river flow, the best way to conserve water quality is specific efforts to control the pollutant loadings and treat the loadings in the basin to reduce the discharge of pollutant loadings to river. But in general the water quality influenced by the dam discharge. Especially in dry season, it is more dominant way to improve the water quality which contaminated with the pollutant loadings from the basin. The dam discharge amounts of the 2 dams in the Keum River that maintain the down stream water quality were estimated for the year of 1999, 2001, 2006, 2011, in case of irrigation and non-irrigation seasons. The pollutant loadings for the basin are estimated with the planning of treatment plants construction schedule for every sub-basins. The river flow rates were considered low flow as 2.33 year low flow and 10 year low flow. The QUAL2E model was used as a tool of simulation.

  • PDF