• Title/Summary/Keyword: Irrigation Area

Search Result 597, Processing Time 0.026 seconds

Present State and Strategies on Environmental Pollution by Animal Wastes (축산분뇨에 의한 환경오염현황과 대책)

  • 이명규;이재일
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1996
  • The main purpose of this research project is to monitor the present state of agricultural environment and to develope the countermeasures for the protection of the environment from the pollution by animal wastes. The results of this research were described largely 3 parts, 1) Monitoring of present state of environmental pollution by animal wastes, 2) Monitoring of animal wastes treatment technology, 3) Strategies for the protection of environmental pollution from animal wastes in future. The current most important problems from animal wastes are water pollution and air pollution commonly regardless of domestic or foreign country. Especially, intensive livestocks breeding pattern in restricted area is actually a real reason of eutrophication, soil acidification, ground water contamination, irrigation water pollution. As a result from this research project, authors recommend the 3 type of strategies for the protection of environmental pollution by animal wastes, 1 . Development of non-discharge type of wastes treatment technology 2. Manufacturing local structure for animal waste recycling system 3. Development of new international environmental program for transfer bioresource and soil environment prevention.

  • PDF

영농방식변화에 따른 논용수량 산정 시스템 개발

  • Ju, Uk-Jong;Kim, Jin-Taek;Park, Gi-Uk;Lee, Yong-Jik
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.82-90
    • /
    • 2006
  • The practical date of rice growing stages and the date for calculating the water demand in paddy field have differences. The causes are rice planting water requirement, nursery bed area and change of average temperature and so on. Some recent papers have shown the same results. So we have investigated the nursery period, rice transplanting period and mid-summer drainage and developed a system for estimating water demand. And we calculated the water demand by using the system. The result showed that calculation by using the new system is more appropriate than the calculation by using the established period. But because water losses in canals and crop coefficient are not determined appropriately, we can calculate the agricultural water demand more accurately by dstablishing canal losses ratio, crop coefficient and so on.

  • PDF

개발촉진지구사업의 평가체계 구축

  • Hwang, Han-Cheol;Kim, Han-Jung;Kim, Jeong-Sik
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.50-62
    • /
    • 2006
  • In order to improve areas lagged behind well-developed others ing the balanced national development. Development Promotion Areas(DPA)was designated in 1996. This study aims to develop a rational evaluation system for projects of DPA. This system has 3 evaluation steps. The first step is to evaluate 10-unit operations which are tourism, recreation, road, water supply and drainage, life environment, and so on. The second step is to evaluate 3 sub-programs such as tourism and recreation, local infrastructures and specialized industry. The third step is to evaluate comprehensively in entire area. A tentative system for project evaluation of DPA was proposed by brainstorming of expert-group. Weighting values of items in PDA were calculated through pair-comparison works of expert group using stepwise matrix sheets by AHP(Analytic Hierarchy Process).

  • PDF

Relationships of Chemical Elements and their Environmental Impacts in Groundwater, Soil, and Fodder Plants in Arid Land

  • Hamdan, Ali;Khozyem, Hassan;Elbadry, Eman
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.331-352
    • /
    • 2021
  • The relationship of both heavy metals and major elements in soil, plants, and groundwater was studied in a hyper-arid area and depends completely on the groundwater to cover its all needs. The study reviles that 27.3% of the studied groundwater was strongly acidic and has very low pH values (

Formation of Sedimentation Pool within Irrigation Reserviors for Water Quality Improvement (저수지 수질개선을 위한 저수지 내 침전지 조성)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • Large quantitive of polllutants are washed into reservoirs during storm events. These polllutants contribute to eutrophication, such as algal blooms and fish kills. This study was conducted for the purpose of assessing the pollutant removal possibilities of sedimentation pool formed by deep dredging of a reservoir inlet. Water quality data were collected in the Masan reservoir, whose inlet has been dredged deep like sedimentation pool. The average concentration of chemical oxygen demand(COD) , toatal nitrogen(T-N) and total phosphrous(T-P) in the deep dredged area were 8.7 ~20.5mg/ι (T-N), 0.17~0.84mg/ι(T-P), which were 4.9%(COD), 29.0%(T-N) and 44.8%(T-P) higher than those of middle part of the reservior. The texture of sediment in the dredged area was silty loam, while that of the middle part was sandy clay loam. Organic matter contents, T-N and T-P of the bottom soil in the dredge area showed higher values than the middle part of the reservoirs. From these results, it was considered thedeep dredged area in the inlet of reservoir might play a key role to settle pollutant particulate. Based on the result of water quality analysis, deep dredging of the reservoir inlet could be assessed to reduce T-N and T-P of the reservoir about 6.5% , 8.3%, respectively. However, the effect of the sedimentation pool would be raised if the settled particles were taken into account in assessing water quality improvement for the reservoir. Accordingly, dredging of a reservoir inlet to make a shape of sedimentation pool is recommended for water quality improvement of reservoir in the stage of dredging plan.

  • PDF

Chemical cleansing as an adjunct to subgingival instrumentation with ultrasonic and hand devices in deep periodontal pockets: a randomized controlled study

  • Zafar, Fahad;Romano, Federica;Citterio, Filippo;Ferrarotti, Francesco;Dellavia, Claudia;Chang, Moontaek;Aimetti, Mario
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.4
    • /
    • pp.276-284
    • /
    • 2021
  • Purpose: The aim of this randomized clinical trial was to assess whether chemical cleansing using a sulfonic/sulfuric acid gel solution (HBX) as an adjunct to scaling and root planing (SRP) resulted in a decrease in residual plaque and calculus in deep periodontal pockets compared to SRP alone. Methods: Fifty-six patients with 56 hopeless posterior teeth, scheduled for extraction due to severe periodontitis, were enrolled in this study. Each tooth was randomly assigned to 1 of the 2 experimental procedures. The test teeth were subjected to the irrigation of the subgingival area with HBX for 2 minutes, followed by SRP with hand and ultrasonic instruments for 14 minutes, and then extracted. The control teeth received only mechanical instrumentation before extraction. Residual biofilm was evaluated on photographs and measured as total area and percentage of root surface covered by remaining plaque (RP) or calculus (RC) after treatment. Results: The initial pocket depth (PD) and total subgingival root surface area were similar between the 2 treatment groups. After treatment, the total subgingival root area covered by RP and RC was statistically significantly larger (P<0.001) in the control group than in the test group. The test teeth showed a lower percentage of RP, but a higher percentage of RC than the control teeth (both P<0.001). Complete calculus removal was achieved in 42% of the control teeth surfaces and in 25% of the test teeth surfaces for a PD of 4 mm. Conclusions: The additional chemical cleansing with HBX resulted in a statistically significant improvement in bacterial plaque removal during SRP of deep pockets, but it was not effective in reducing calculus deposits.

Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index (위성영상기반 증발스트레스지수를 활용한 필지단위 논 가뭄 모니터링)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Kim, Ha-Young;Woo, Seung-Beom;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.47-57
    • /
    • 2021
  • Drought monitoring over paddy field area is an important role as the frequency and intensity of drought due to climate change increases. This study analyzed the applicability of drought monitoring on paddy crops using MODIS-based field surveys. As a satellite-based drought index using evapotranspiration for quantitative drought determination, ESI (Evaporative Stress Index), was applied and calculated through the ratio of MODIS- based actual and potential evapotranspiration. For the irrigated areas of Idong, Gosam, Geumgwang, and Madun reservoirs the availability of irrigation water supply, ponding depth, precipitation, paddy growth were investigated for the paddy field within one grid of MODIS. In addition, the percentile-based ESI drought severity was calculated to compare the growth process of paddy and changes in the drought category of ESI. The Idong area was irrigated about a week later than other reservoirs for the period of water supply, transplanting, and water drainage and the ESI drought category tended to be different. The Gosam, Geumgwang, and Madun area expressed moderate drought prior to the farming season, and indicated normal as the water was supplied. During the water drainage, the drought category intensified, indicating that the water available on land was decreasing. These results demonstrated that the MODIS-based ESI could be an effective tool for agricultural drought monitoring over paddy field area.

Simulation of Water Redistribution for the Resized Beneficiary Area of a Large Scale Agricultural Reservoir (대규모 농업용저수지 수혜면적 변화에 따른 효율적 용수재분배 모의)

  • Sung, Muhong;Jeung, Minhyuk;Beom, Jina;Park, Taesun;Lee, Jaenam;Jung, Hyoungmo;Kim, Youngjoo;Yoo, Seunghwan;Yoon, Kwangsik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Optimal water management is to efficiently and equally supply an appropriate amount of water by using irrigation facilities. Therefore, it is necessary to evaluate water supply capacity through distribution simulation between the designed distribution rate and re-distributed rate according to the changed farming conditions. In this study, we recalculated the agricultural water supply amount of Geumcheon main canal, which beneficiary area was reduced due to the development of Gwangju-Jeonnam innovation city, and we constructed a canal network using the SWMM model to simulate the change in supply rate of each main canal according to the re-distributed rate. Even though the supply amount of the Geumcheon main canal was reduced from 1.20 m3/s to 0.90 m3/s, it showed a similar supply rate to the current, and the reduced quantity could be supplied to the rest of the main canal. As a result, the arrival time at the ends of all main canal, except for the Geumcheon main canal, decreased from 1 to 3 hours, and the supply rate increased from 4 to 17.0% at the main canal located at the end of the beneficiary area of Naju reservoir.

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF

Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field (논물 담수심이 온난화 가스 배출에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Jong-Gu;Park, Chan-Won;Shin, Yong-Kwang;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.150-156
    • /
    • 2005
  • The increasing emission of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. This study was conducted to investigate greenhouse gas emission with irrigation water depth in paddy field. Area of each experiment plot is $70m^2$, Three treatments with three replications were carried out in this experiment, which was laid out as randomized complete block design. The treatments of irrigation water were maximum field water capacity and 4 and 8 cm depth. The application rate of fresh rice straw was $8,000kg\;ha^{-1}$ in combination with chemical fertilizers ($110kg\;N\;ha^{-1}$, $45kg\;P_2O_5\;ha^{-1}$ and $57kg\;K_2O\;ha^{-1}$). The $CH_4$ emission was highest at 32 days after rice transplanting with rice straw treatment. The $CH_4$ emission in the plot of maximum field water capacity was lower compared with 4 and 8 cm of irrigation depth. $CH_4$ and $N_2O$ emission under different water depth in the paddy field were 30 and $1.52kg\;ha^{-1}$ at 8 cm depth, 281 and $1.71kg\;ha^{-1}$ at 4 cm depth, and 219 and $2.01kg\;ha^{-1}$ at water saturated condition. The total emission of greenhouse gases equivalent to $CO_2$ emission with rice straw application were $6,939kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $6,431kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $5,222kg\;CO_2\;ha^{-1}$ at water saturated condition. The GWPs without rice straw application were $4,449kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $3,702kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $4,579kg\;CO_2\;ha^{-1}$ at water saturated condition.