• 제목/요약/키워드: Irreversible Fouling

검색결과 28건 처리시간 0.027초

활성탄-막 공정에서 활성탄 입자 특성이 유기물 제거와 막 여과 효율에 미치는 영향 (Effect of Characteristics of Activated Carbon Particles on Oragnic Removal and Membrane Permeability in Activated Carbon - Membrane Process)

  • 한상준;홍성호;이상호
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.363-371
    • /
    • 2013
  • In this study, effect of activated carbon size on flux and fouling of membrane was investigated on activated carbon and membrane hybrid system. The activated carbon was prepared with crushing and screening. The activated carbon was named by A100, B100, A200, B200, A325 and B325 due to size of activated carbon. The permeability for A100, B100, A200 and B200 showed no significant difference. However, the permeability for A325 and B325 was decreased rapidly and was lowed due to increase the concentration of NOM. Main resistance for A100, B100, A200 and B200 was identified as irreversible fouling. However main resistance for A325 and B325 was identified as reversible fouling. The smaller activated carbon adsorbs NOM faster than bigger particles, which can show high permeability at early stage of the operation and then showed faster decrease of permeability at end of the operation.

오존산화/응집 혼성공정에 의한 UF 분리막의 막오염 저감에 관한 연구 (A study on mitigation of membrane fouling by ozonation/coagulation in ultrafiltration)

  • 김건엽;김민규;이창하;김형수;김지훈;이경일
    • 상하수도학회지
    • /
    • 제31권2호
    • /
    • pp.161-168
    • /
    • 2017
  • Microfiltration (MF) and Ultrafiltration (UF) membrane processes capable of producing highly purified water have been extensively applied as a pretreatment process in the wastewater reuse field with the improvement of membrane properties and resistance, development of operating protocols, and improvement of technologies of backwashing and physicochemical cleaning, and improvement of scale and antifoulants. However, despite of the development of membrane production and process technologies, fouling still remains unresolved. This study confirmed that foulants such as polysaccharides, proteins and humic substances existed in final treated effluent (secondary effluent) by fluorescence excitation emission matrix (FEEM) and fourier transform infrared spectroscopy (FTIR) analysis. In addition, when constructing ozone oxidation and coagulation processes as a hybrid process, the removal efficiency was 5.8%, 6.9%, 5.9%, and 28.2% higher than that of the single process using coagulation in turbidity, color, dissolved organic carbon (DOC), and UV254, respectively. The reversible and irreversible resistances in applying the hybrid process consisting of ozone oxidation and coagulation processes were lower than those in applying ozone oxidation and coagulation processes separately in UF membrane process. Therefore, it is considered possible to apply ozonation/coagulation as a pretreatment process for stable wastewater reuse by and then contributing to the reduction of fouling when calculating the optimal conditions for ozone oxidation and coagulation and then to applying them to membrane processes.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

MBR에서 간헐포기에 의한 오염저감 효과 (Effects of Fouling Reduction by Intermittent Aeration in Membrane Bioreactors)

  • 최영근;김현철;노수홍
    • 멤브레인
    • /
    • 제25권3호
    • /
    • pp.276-286
    • /
    • 2015
  • 30 LMH의 정유량 플럭스로 운전하는 MBR에서, 휴지 및 역세정에 따른 한외여과 분리막의 오염을 조사하였다. 또한, 연속적인 공기세정과 비교하여 분리막 여과저항을 최소화하기 위한 간헐적인 공기세정을 평가하였다. 여과 조건은 14.5분 여과와 0.5분의 휴지를 유지하였으며, 역세정 시간은 휴지 시간과 동일하게 운전하였다. 공기세정이 정지하는 동안에 분리막 표면의 겔층 위에 케?이 빠르게 축척되었으며, 역세정으로 겔층과 케?층의 복합층은 쉽게 제거되었다. 역세정 후에 공기세정이 정지하는 동안 분리막 표면에 케?이 형성되어 공경 내부의 오염현상을 억제하였다. Pearson 상관성을 조사한 결과, 간헐적인 공기세정에서 공기 세정이 정지하는 시간과 분리막의 오염은 매우 연관성이 높다는 것을 알았다. 즉, 간헐적인 세정에서 공기세정이 정지하는 시간이 갈수록 오염억제에 효과적이었다.

Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain

  • Rojas-Serrano, Fatima;Alvarez-Arroyo, Rocio;Perez, Jorge I.;Plaza, Fidel;Garralon, Gloria;Gomez, Miguel A.
    • Membrane and Water Treatment
    • /
    • 제6권1호
    • /
    • pp.77-94
    • /
    • 2015
  • Ultrafiltration membranes have several advantages over conventional drinking-water treatment. However, this technology presents major limitations, such as irreversible fouling and low removal of natural organic matter. Fouling depends heavily on the raw-water quality as well as on the operating conditions of the process, including flux, permeate recovery, pre-treatment, chemical cleaning, and backwashing. Starting with the premise that the optimisation of operating variables can improve membrane performance, different experiments were conducted in a pilot plant located in Granada (Spain). Several combinations of permeate and backwashing flow rates, backwashing frequencies, and aeration flow rates were tested for low-quality water coming from Genil River with the following results: the effluent quality did not depend on the combination of operating conditions chosen; and the membrane was effective for the removal of microorganisms, turbidity and suspended solids but the yields for the removal of dissolved organic carbon were extremely low. In addition, the threshold transmembrane pressure (-0.7 bar) was reached within a few hours and it was difficult to recover due to the low efficiency of the chemical cleanings. Moreover, greater transmembrane pressure due to fouling also increased the energy consumption, and it was not possible to lower it without compromising the permeate recovery. Finally, the intensification of aeration contributed positively to lengthening the operation times but again raised energy consumption. In light of these findings, the feasibility of ultrafiltration as a single treatment is questioned for low-quality influents.

음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향 (Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate)

  • 김영오;전덕우;윤성규;장정희;배재호;유관선;김정환
    • 멤브레인
    • /
    • 제21권4호
    • /
    • pp.360-366
    • /
    • 2011
  • 음식물 폐기물 침출수를 처리하는 분리막 결합 고온 혐기성소화공정(생물학적 반응조) (Anaeorobic Membrane Bioreactor, AnMBR)의 파일럿 운전에서 분리막의 교차여과 속도와 막간압력이 파울링에 미치는 영향을 관찰하였다. 연구 결과 정압여과 하에서 교차여과 속도가 증가할수록 파울링의 속도는 현격히 감소되었다. 그러나 이와 같은 영향은 낮은 막간압력에서 더욱 효과적이었다. 막간압력이 증가할수록 여과대상 물질의 압축성으로 인해 투과성이 상대적으로 낮은 파울링층(혹은 케익층)이 분리막 표면에 형성된 것에 기인된 듯하다. 여과대상 시료의 입도분석을 해 본 결과 입자크기는 약 $10{\sim}100{\mu}m$ 범위에서 분포하였고 이에 따라 브라운확산에 의한 역수송보다 분리막 표면에서 교차여과에 의해 발생하는 전단력이 입자의 역수송에 더욱 기여하고 있음을 예측할 수 있었으며 이는 AnMBR의 연속운전을 통해 재확인할 수 있었다. 운전 후 막 부검을 실시한 결과 유기 및 무기 파울링이 모두 관찰되었으나 어느 것이 지배적인 파울링 기작을 나타내는지는 앞으로 더욱 연구가 필요하다. 무기 파울링의 경우 대부분 분리막 표면에서 스케일링 형성이 지배적이었으며, 따라서 분리막의 공극 막힘에 주로 기여하는 작은 콜로이드성 유기물질의 경우 분리막 표면에서 전단력에 의한 역수송 효과는 그다지 크지 않을 것으로 사료된다.

회분식 막여과 시스템에서 약품역세가 여과성능에 미치는 영향 (The Effect of Chemical Backwash on Filtration Performance of Batch Membrane Filtration System)

  • 김관엽;이의종;권진섭;김형수
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.855-864
    • /
    • 2009
  • The main object of this work was to determine the influence of periodic chemical backwash on filtration resistance in membrane filtration system. In this work Hermia's models were used to investigate the fouling mechanisms involved in the microfiltration of $0.45{\mu}m$ filtered sewage feed. Batch microfiltration experiments were performed at transmembrane pressure 0.4 bar and different feed SCOD concentration (9~67 mgSCOD/L). The results showed that the best fit to experimental data corresponded to the intermediate blocking model followed by the standard and complete blocking model for all the experimental conditions tested. From the simulation results of filtration performance, it was found that in order to maintain sustainable operation of membrane filtration system, irreversible foulant component accumulated continuously on membrane surface and/or pore must be effectively removed. In addition, it was verified that periodic chemical backwash using NaOCl or NaOH effectively improved filtration performance of membrane.

침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향 (Influence of Membrane Material and Structure on Fouling of a Submerged Membrane Bioreactor)

  • 최재훈;김형수
    • 대한환경공학회지
    • /
    • 제30권1호
    • /
    • pp.31-36
    • /
    • 2008
  • 본 연구는 도시하수 처리를 위한 침지형 막 분리 활성슬러지법(membrane bioreactor: MBR) 시스템에서 막 재질 및 구조가 파울링에 미치는 영향을 조사하기 위하여, polytetrafluoroethylene(PTFE), polycarbonate(PCTE) 및 polyester(PETE)의 정밀여과 막(기공크기: 0.1 $\mu$m)을 사용하였다. 120일의 운전기간 동안 PETE막 여과속도는 다른 막들에 비해 가장 빠른 감소경향을 보였으나, 화학세정을 할수록 점차 PCTE 및 PTFE막과 유사한 여과속도 감소경향을 보였다. PETE막의 유기물 제거율이 다른 막들에 비해 약간 높게 나타났으며, 이것은 막의 빠른 파울링 발생과 밀접한 관련이 있는 것으로 판단된다. 반응조내 슬러지 상징액 및 막 여과수에 존재하는 DOC성분을 친수성 및 소수성으로 분획한 결과, 본 연구에서는 막의 친수성/소수성이 MBR 파울링에 미치는 영향이 크지 않은 것으로 나타났다. 파울링이 발생한 막들의 각종 여과저항 값을 분석한 결과, PETE막은 비가역적 파울링에 의한 영향이 다른 막들에 비하여 컸으며, 유기물 제거율에도 긍정적인 영향을 미친 것으로 판단된다.

Effects of Natural Convection Instability on Membrane Performance in Dead-end and Cross-flow Ultrafiltration

  • Youm, Kyung-Ho;Anthony G. Fane
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.6-10
    • /
    • 1995
  • An inevitable problem feature of membrane processing is concentration polarization (CF) which is a result of the accumulation of retained solutes at the membrane surface. In ultrafiltration (UF), this accumulation can lead to fouling due to the irreversible deposition of macromolecules both at the membrane surface and in the membrane pores. To reduce or control CP and folding, many possible methods have been considered [1]. One of the most effective approaches is to induce fluid instability near the membrane surface by using pusation flow [2, 3], Taylor [4] and Dean [5, 6] vortex flows. Winzeler and Belfort [6] have comprehensively reviewed several possible attempts to use fluid instabihties for improved membrane performance.

  • PDF

세라믹 막여과의 성능향상을 위한 응집 전처리의 적용 (Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration)

  • 강준석;송지영;박서경;정아영;이정준;서인석;채선하;김성수;김한승
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.