• Title/Summary/Keyword: Irradiation time

Search Result 1,443, Processing Time 0.032 seconds

DNA Double-Strand Breaks Serve as a Major Factor for the Expression of Arabidopsis Argonaute 2

  • Lee, Sungbeom;Chung, Moon-Soo;Lee, Gun Woong;Chung, Byung Yeoup
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.243-248
    • /
    • 2016
  • Argonaute 2 (AtAGO2) is a well characterized effector protein in Arabidopsis for its functionalities associated with DNA double-strand break (DSB)-induced small RNAs (diRNAs) and for its inducible expression upon ${\gamma}$-irradiation. However, its transcriptional regulation depending on the recovery time after the irradiation and on the specific response to DSBs has been poorly understood. We analyzed the 1,313 bp promoter sequence of the AtAGO2 gene ($1.3kb_{pro}$) to characterize the transcriptional regulation of AtAGO2 at various recovery times after ${\gamma}$-irradiation. A stable transformant harboring $1.3kb_{pro}$ fused with GUS gene showed that the AtAGO2 is highly expressed in response to ${\gamma}$-irradiation, after which the expression of the gene is gradually decreased until 5 days of DNA damage recovery. We also confirm that the AtAGO2 expression patterns are similar to that of ${\gamma}$-irradiation after the treatments of radiomimetic genotoxins (bleomycin and zeocin). However, methyl methanesulfonate and mitomycin C, which are associated with the inhibition of DNA replication, do not induce the expression of the AtAGO2, suggesting that the expression of the AtAGO2 is closely related with DNA DSBs rather than DNA replication.

Screening of Sterilized Ramen Soup by DEFT/APC Method and Its Quality Properties as Affected by Irradiation (DEFT/APC 측정에 의한 시판 분말수프의 살균처리여부 확인 및 감마선 처리에 따른 품질특성 평가)

  • Ahn, Jae-Jun;Kim, Kwang-Hoon;Park, Sung-Hyun;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.515-521
    • /
    • 2009
  • The DEFT (direct epifluorescent filter technique)/APC (aerobic plate count) test was utilized to screen powdered Ramen soup samples (RS-1, RS-2) whether or not they have been microbial-decontaminated. The initial microbial loads of commercially-packaged samples were log DEFT 6.46 (RS-1) and 7.05 (RS-2), but the viable bacterial counts were log APC 2.74 (RS-1) and 1.95 (RS-2), respectively; this finding showed that they have been already decontaminated by methods other than irradiation. The same samples were then subjected to gamma irradiation at 0, 5 and 10 kGy in order to evaluate the microbial and physicochemical changes during post-irradiation storage for 6 months under room conditions ($10{\pm}3^{\circ}C$). The DEFT count was constant in irradiated samples even at different doses, but APC decreased with dose increases; this implies that the log DEFT/APC increased in a linear fashion with dose. No coliforms, yeasts and molds were detected in any of the samples, whereas the initially detected aerobic bacteria ($5.49{\times}10^2CFU/g$) were inactivated by 5 kGy or more and no growth was observed during the subsequent storage period. The pH of RS-1 was reduced by irradiation (p<0.01), but increased (p<0.01) with increasing storage time. Irradiation induced a reduction in volatile basic nitrogen (VBN), whereas an increase in thiobarbituric acid (TBA) values was observed. The storage time proved more influential than irradiation up to 10 kGy in terms of changes in the VBN and Hunter’s color values of powdered Ramen soups.

Observation of Acoustic Characteristic Change in bubble cloud by Ultrasonic Cavitation (초음파 캐비테이션에 의한 기포군에서의 음향특성 변화관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.351-356
    • /
    • 2012
  • Ultrasonic cavitation is a physical phenomenon that generates and collapses microbubbles in media (mainly fluids) under conditions of strong ultrasonic irradiation. In this study, changes in the ultrasonic acoustic characteristics of bubble clouds in relation to ultrasonic irradiation were observed by the quantitative evaluation of cavitation yields. Concave-type single ultrasonic transducers with center frequencies of 500 kHz and 1.1 MHz were used to produce cavitation, and 2.25 MHz interference ultrasonic waves that would traverse any bubble clouds generated were used to analyze the cavitation. The parameters used for the evaluation of cavitation yields (changes in the center frequency, attenuation characteristics, and the propagation time of penetrating waves) were analyzed in relation to the cavitation-generating conditions (irradiation intensity, excitation signal, and center frequency). On the basis of these results, correlations between the changes in the center frequency and irradiation intensity were identified. Although the correlation coefficient was low, notable changes were observed in the center frequency under certain irradiation conditions. Attenuation trends in the interference ultrasonic waves showed high correlations with all the irradiation conditions, and it was noted that these trends were not affected by the forms of cavitation generated. No differences in the propagation time were observed among different irradiation conditions. These findings suggest that bubble yields can be quantitatively evaluated effectively by evaluating the diverse irradiation conditions and that such a quantitative evaluation could be used to study the basic cavitation phenomenon occurring in high-intensity ultrasonic wave treatment.

UVB Photosynthesis of Vit. D3 and Fabrics (Part I) -in vitro- (자외선에 의한 비타민 $D_3$합성과 직물(제1보) -실험관내 실험 -)

  • 안령미;송명견
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.5
    • /
    • pp.903-910
    • /
    • 1997
  • Vit. D3 was measured which was produced by UVB irradiation to provit. D3, 7-d ehyd rock o 1 cst or of (7-DH Cl Measuring the amount of vie. D3 when it was irradiated to the fabrics which had different UV8 transmittance, production of vile. Ds by UVB(Ultraviolet B) and inhibition from formation of vile. D3 by fabrics were absorbed and followings are the results. As the amount of irradiated compared UVB increased, the amount of the production of vile. D3 produced by UVB irradiation from 7-DHC was increased. After treatment of 7-DHC by UVB irradiation and incubated respectively for 24hr, 48hr and 72hr at 36.5$^{\circ}C$ The amount of lit. D3 was increased as incubating time passed. When irradiated UVB on 7-DHC, intermediate of vile. D3, lumisterol, tachysterol and previt. D were showed and those materials were seemed to be changed to vile. D3 as incubation time passed. The amount of vile. D3 which was produced by irradiation 7-DHC showed close relation with UVB transmittance rate of summer fabrics (r= 0.987). Clothes, hats, and sun screen cream reduce the amount of vile. D3 Produced naturally in human skin and it result the decrease of calcium in blood which is absorbed through vit. D. Those all can cause or worsen osteomalacia especially to women and the aged people. Therefore, it is necessary to research and to develop function oriented clothing which can transmit UV which produce vile. D3 at the same time which can protect toxical UVB.

  • PDF

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Influence of UV Irradiation Interval on Mineral Content in Metatarsus of Broiler Chicks (자외선 조사간격이 브로일러 병아리의 중족골 광물질 함량에 미치는 영향)

  • 장윤환;조인호;여영수;이은택;배은경;김중달
    • Korean Journal of Poultry Science
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • A study was conducted to investigate the concentrations of Ca, P and ash in metatarsal bone of broiler chicks exposed to UV light in different Interval. Day-old Hubbard broiler chicks (199=10 control+3 irradiation interval $\times$ 9 elapsed time $\times$ 7 replicate) were fed vitamin D3 deficient diet for 3 wk in a windowless subdued-light room and exposed to 297 nm UVB light by 0.068 mJ/$\textrm{cm}^2$ three times In 0, 12 or 24 h interval. The metatarsal bones were taken at 0, 6, 12, 18, 24, 48, 96, 144 or 240 h after last irradiation, separated from adhering tissue, ether extracted, dried and ashed. The Ca concentration was measured by atomic absorption spectrophotometry and P by ammonium metavanadate colorimetry. When the birds were continuously exposed to UVB light for 30 min without interval, the Ca content in metatarsus increased gradually according to the time after irradiation and reached the highest value 16.75% at 240 h after exposure. The P content also increased gradually until 144 h, where it was 9.75%. The ash content in metatarsus increased continuously until 240 h, the final time in this research, where 42.75% was shown. As 10 min three times irradiation in 12 h interval was applied to the chicks, the metatarsal Ca presented a small peak(13.31%) at 12 h after irradiation and a large peak(16.91%) at 144 h. P content showed a small peak(7.18%) at 12 h and a large level(8.34%) at 240 h. Ash content increased continuously until 240 h, where it was 46.53%. The small peaks in Ca and P concentration were thought to be derived from preirradiation at 12 and 24 h before final irradiation for 10 min. When 24 h interval system was treated, the peak value of Ca content(24.18%) occurred earlier(96 h) than those in 0 and 12 h interval systems. P content also showed the maximum value at 96 h(7.29%). Ash content presented an increasing trend until 240 h, where 45.75% was appeared. In respecting the method of UVB irradiation, the peak value of Ca content in metatarsus appeared earlier in 24 h interval system than in other systems. Meanwhile the ash contents in metatarsus of birds exposed to UVB light in 12 and 24 h interval procedures were higher than those in 0 h interval one. Therefore, it was concluded that a daily 10 min irradiation of UVB light would be desirable for increasing the Ca and ash content in metatarsus of brolier chicks.

  • PDF

Impact of Irradiation Time on the Hydrolysis of Waste Activated Sludge by the Dielectric Heating of Microwave

  • Byun, Imgyu;Lee, Jaeho;Lim, Jisung;Lee, Jeongmin;Park, Taejoo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • The effects of initial solid concentration and microwave irradiation (MWI) time on the hydrolysis of waste activated sludge (WAS) were investigated. MWI time strongly influenced WAS hydrolysis for all initial solid concentrations of 8.20, 31.51, and 52.88 g VSS/L. For all WAS, the volatile suspended solids (VSS) solubilization degree ranged from 35.6% to 38.4% during a total MWI time of 10 min. Soluble chemical oxygen demand (SCOD) concentration increased at a rate proportional to the decrease of VSS during the MWI. However, the clearly different VSS solubilization patterns that were observed during the MWI were explained by the 2-step hydrolysis of WAS, consisting of the initial disintegration of the easily degradable part of the sludge, followed by the subsequent disintegration of the hardly degradable part of the sludge. WAS hydrolysis rates for 3 to 6 min of MWI were significantly lower than those for less than 3 min, or more than 6 min. From these results, 3 min MWI time and WAS of 31.51 g VSS/L (centrifugal thickener WAS) showed the most efficient hydrolysis of WAS at 36.0%. The profiles of total nitrogen (T-N) concentrations corresponded well to the SCOD increases in terms of the empirical formula of bacterial cell mass ($C_5H_7O_2N$). The negligible T-N increase and pH decrease during WAS hydrolysis by MWI will allow the application of this process to subsequent biological processes, such as anaerobic digestion.

Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis (Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출)

  • Park, Ji-Min;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2021
  • In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.

Efficiency of Gamma Irradiation to Inactivate Growth and Fumonisin Production of Fusarium moniliforme on Corn Grains

  • Mansur, Ahmad Rois;Yu, Chun-Cheol;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • The efficiency of gamma irradiation (0, 1, 5, 10, 15, 20, and 30 kGy) as a sterilization method of corn samples (30 g) artificially contaminated with Fusarium moniliforme stored at normal condition ($25^{\circ}C$ with approximate relative humidity (RH) of 55%) and optimal condition ($25^{\circ}C$ with a controlled RH of 97%) was studied. The results showed that the fungal growth and the amount of fumonisin were decreased as the dose of gamma irradiation increased. Gamma irradiation at 1-5 kGy treatment significantly inhibited the growth of F. moniliforme by 1-2 log reduction on corn samples (P < 0.05). Sublethal effect of gamma irradiation was observed at 10-20 kGy doses after storage, and a complete inactivation required 30 kGy. Fungal growth and fumonisin production increased with higher humidity and longer storage time in all corn samples. This study also demonstrated that there was no strict correlation between fungal growth and fumonisin production. Storage at normal condition significantly resulted in lower growth and fumonisin production of F. moniliforme as compared with those stored at optimal condition (P < 0.05). Gamma irradiation with the dose of ${\geq}5$ kGy followed by storage at normal condition successfully prolonged the shelf life of irradiated corns, intended for human and animal consumptions, up to 7 weeks.

The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants

  • Kim, Ji-Hyun;Herr, Yeek;Chung, Jong-Hyuk;Shin, Seung-Il;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.234-241
    • /
    • 2011
  • Purpose: One of the most frequent complications related to dental implants is peri-implantitis, and the characteristics of implant surfaces are closely related to the progression and resolution of inflammation. Therefore, a technical modality that can effectively detoxify the implant surface without modification to the surface is needed. The purpose of this study was to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on the microstructural changes in double acid-etched implant surfaces according to the laser energy and the application duration. Methods: The implant surface was irradiated using an Er:YAG laser with different application energy levels (100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse) and time periods (1 minute, 1.5 minutes, and 2 minutes). We then examined the change in surface roughness value and microstructure. Results: In a scanning electron microscopy evaluation, the double acid-etched implant surface was not altered by Er:YAG laser irradiation under the condition of 100 mJ/pulse at 10 Hz for any of the irradiation times. However, we investigated the reduced sharpness of the specific ridge microstructure that resulted under the 140 mJ/pulse and 180 mJ/pulse conditions. The reduction in sharpness became more severe as laser energy and application duration increased. In the roughness measurement, the double acid-etched implants showed a low roughness value on the valley area before the laser irradiation. Under all experimental conditions, Er:YAG laser irradiation led to a minor decrease in surface roughness, which was not statistically significant. Conclusions: The recommended application settings for Er:YAG laser irradiation on double acid-etched implant surface is less than a 100 mJ/pulse at 10 Hz, and for less than two minutes in order to detoxify the implant surface without causing surface modification.