• Title/Summary/Keyword: Irradiation production

Search Result 503, Processing Time 0.027 seconds

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF

Effect of 840 nm Light-Emitting Diode(LED) Irradiation on Monosodium Iodoacetate-Induced Osteoarthritis in Rats (흰쥐의 MIA 유발 무릎 뼈관절염에 대한 840 nm LED의 효과)

  • Jekal, Seung-Joo;Kwon, Pil-Seung;Kim, Jin-Kyung;Lee, Jae-Hyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.2
    • /
    • pp.151-159
    • /
    • 2014
  • PURPOSE: The purpose of this study was to evaluate whether light-emitting diodes (LED) irradiation could be effective in a noninvasive, therapeutic device for the treatment of osteoarthritis(OA). METHODS: Twenty-four male Sprague-Dawley rats were divided into four groups: Vehicle control (saline); monosodium iodoacetate-injection (MIA); LED irradiation after MIA injection (MIA-LED); indomethacin-treatment after MIA injection (MIA-IMT). OA was induced by intra-articular injection of 3 mg MIA through the patellar ligament of the right knee. Vehicle control rats were injected with an equivalent volume of saline. The LED was irradiated for 15 min/day for a week after 7 days of MIA treatment. To compare with the effect of LED irradiation, the indomethacin was administrated 20 mg/kg twice a week orally after 7 days of MIA treatment. Knee joints were removed and fixed overnight in 10% neutral buffered formalin and decalcified by EDTA for 2 week before being embedded in paraffin. The assessment of OA induction were monitored by knee movement and radiographic finding. Histologic analysis were performed following staining with hematoxylin and eosin, safranin O-fast green, or toluidine blue, picrosirius red, and histologic changes were scored according to a modified Mankin system. Apoptotic cell in tissue sections was detected using TUNEL method. RESULTS: Radiographic examination could not show the differences between the MIA-treated and the MIA-LED-treated rats. In the histologic analysis, however, LED irradiation prevented cartilage damage and subchondral bone destruction, and significantly reduced mononuclear inflammatory cell infiltration and pannus formation. LED irradiation also reduced apoptosis of cartilage cells, but it prevented apoptosis of infiltrated inflammatory cells in synovium. In addition, LED irradiation showed an increase of collagen production in the meniscus. CONCLUSION: These results suggest that the 840 nm LED irradiation would be a suitable non-thermal phototherapy for the treatment of OA, as a cartilage protection and anti-inflammatory modality.

Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes

  • Lee, Beom;Park, Jun-Gyu;Shin, Won-Beom;Kim, Beom-Soo;Byun, Byoung-su;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.662-669
    • /
    • 2019
  • Anaerobic digestion is a popular sewage sludge (Ss) treatment method as it provides significant pollution control and energy recovery. However, the low C/N ratio and poor biodegradability of Ss necessitate pretreatment methods that improve solubilization under anaerobic conditions in addition to anaerobic co-digestion with other substrates to improve the process efficiency. In this study, three pretreatment methods, namely microwave irradiation, ultrasonication, and heat treatment, were investigated, and the corresponding improvement in methane production was assessed. Additionally, the simplex centroid design method was utilized to determine the optimum mixture ratio of food waste (Fw), livestock manure (Lm), and Ss for maximum methane yield. Microwave irradiation at 700 W for 6 min yielded the highest biodegradability (62.0%), solubilization efficiency (59.7%), and methane production (329 mL/g VS). The optimum mixture ratio following pretreatment was 61.3% pretreated Ss, 28.6% Fw, and 10.1% Lm. The optimum mixture ratio without pretreatment was 33.6% un-pretreated Ss, 46.0% Fw, and 20.4% Lm. These results indicate that the choice of pretreatment method plays an important role in efficient anaerobic digestion and can be applied in operational plants to enhance methane production. Co-digestion of Ss with Fw and Lm was also beneficial.

Effect of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of Citrullus colocynthis (L.) Schrad

  • Ramakrishna, D.;Chaitanya, G.;Suvarchala, V.;Shasthree, T.
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In the present study in vitro mutagenesis was used to study the effect of gamma irradiation and EMS on callus induction, morphogenesis and production of multiple shoots from different explants of Citrullus colocynthis (L.) Schrad. Gamma radiations (5 kR to 20 kR) and certain chemicals have been effected on plant growth developments and changes of biochemical metabolisms in plants. Murashige and Skoog (MS) medium containing with auxins such as NAA, IAA, 2,4-D (0.5 ~ 2.0 mg/l), cytokinines BAP, kn TDZ, (0.5 ~ 2.5 mg/l), L-Glutamic acid (1 ~ 2 mg/l) and Coconut milk (10 ~ 20%). After 5 weeks on induction media, explants and callus (EC) were exposed to 5 kR, 10 kR, 15 kR and 20kR, of gamma radiation and treated with 1, 2, 3, 4 and 5 mM ethyl methane sulphonate (EMS) for 30 min. The highest percentage of callusing was observed (70%) stem irradiated with 5 kR and significantly decrease in fresh and dry weight of callus in the below 4 kR doses and above 20 kR doses, there was a progressive decrease in the fresh weight and dry weights when compared to control callus. Maximum percentage of plantlet regeneration (59%) was induced from callus exposed to 15 kR gamma irradiation on MS media fortified with 2.0 mg/l 2,4-D + 2.0 mg/l BAP + 2.0 mg/l L-glutamic acid. Increase in gamma irradiation dose above 15 kR and 5 mM EMS reduced regeneration capacity of callus. Doses higher than 20 kR and 7 mM EMS was lethal to micropropagated plants of Citurullus colocynthis.

A Study on Improvement of Distribution Facility in Wholesale Agricultural Products Market

  • Gal, Won-Mo;Kwon, Ki-Tae;Lee, Woo-Sik;Choi, Eun-Mee;Kwon, Lee-Seung;Seong, Seung-Hwan;Kwon, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.16 no.2
    • /
    • pp.53-65
    • /
    • 2018
  • Purpose - The purpose of this study is to investigate the effect of gamma - irradiation on the effluent from food distribution in the large agricultural and marine products market. This study will contribute to the distribution process as well as the agricultural and fishery distribution facilities. Research design, data, and methodology - In order to reduce the odor, the smell was examined in the anaerobic digestion process by irradiating gamma rays to the wastewater of mixed food discharged from a large restaurant. An odor determination panel list was constructed to determine if the odor was present in the air dilution drainage and the odor concentration was analyzed by instrumental analysis. Results - It was confirmed that the sulfur content increased gradually from 3 months. Ammonia decreased from 33.57ppm at the initial measurement to 4.12 ppm at the end of the experiment. Methane production was highest at 100kGy when exposed to gamma rays of 0-200kGy at pH 12. In other words, it is considered that gamma irradiation doses are most effective at 100kGy and are suitable for large capacity wastewater treatment facilities in terms of economic feasibility. Conclusions - In pre-treatment of compound food wastewater, gamma irradiation is most cost effective when examined at 100kGy. The economic efficiency of the pre-treatment method by gamma irradiation is much higher than the wastewater treatment in the large-scale agricultural and marine products distribution market.

Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.487-492
    • /
    • 2013
  • Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester (FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.

Effects of Polygoni Multiflori Radix on the Elastase, and Collagenase Activities and the Procollagen Synthesis in Hs68 Human Fibroblasts

  • Kim, Myung-Gyou;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Objectives : Polygoni Multiflori Radix (PMR), the roots of Polygonum multiflorum Thunberg, is used to nourish the blood and yin and used for preventing premature greying of the hair. There are some articles on its preventing effects on the melanogenesis. However, there is no report about its effects on the collagen and elastin. The present study was designed to investigate its effects on collagen metabolism and elastase activity. Methods : The effects of PMR on type I procollagen production and collagenase activity in human normal fibroblasts Hs68 after UVB (312 nm) irradiation were measured by ELISA method. Cells were pretreated with the PMR for 24 hours prior to UVB irradiation. After UVB irradiation, cells were retreated with the sample and incubated for additional 24 hours. The amount of collagen type I was measured with a procollagen type I C-peptide assay kit. The activity of collagenase was measured with a MMP-1 human biotrak ELISA system. The elastase activities after treatment of PMR were measured as well. Results : In the present study, the collagen production was not increased. However, the increased collagenase activity after UVB damage was significantly recovered to $50.2{\pm}14.5%$, $8.2{\pm}3.1%$, and $10.0{\pm}3.3%$ (10, 30, and $100{\mu}g/ml$). The elastase activities (10, 100, and $1000{\mu}g/ml$) significantly reduced to $75.2{\pm}5.2%$, $40.3{\pm}1.2%$, and $27.0{\pm}1.9%$, respectively. Conclusion : PMR showed the inhibitory effects on collagenase and elastase activity. These results suggest that PMR may have potential as an anti-aging ingredient in cosmetic herbal treatment.

Production of Gentamicin by Micromonospora purpurea (Micromonospora purpurea에 의한 gentamicin생성)

  • 이묘재;유두영
    • Korean Journal of Microbiology
    • /
    • v.17 no.3
    • /
    • pp.152-159
    • /
    • 1979
  • Using Micromonospora strain, gentamicin was produced by fermentation. The increase in gentamicin productivity was studied by strain improvement and systematic optimization of fermentation process variables. The productivity of parent strain of M.purpurea (ATCC15835) was improved by selection of superior mutant after U.V. irradiation and induction of genetamicin resistance. Potato starch and soy bean meal were the best carbon and nitrogen sources for gentamicin fermentation, respectively. The optimum stimulating concentration of Co ion for gentamicin production was 0.006g $CoCl_2$ per liter of broth. Oxygen ws found to be an important factor for gentamicin yield. The optimum pH for the cell growth and gentamicin production were 7.2 and 6.8 respectively. By controlling the pH, oxygen, and other conditions found in this study at the optimal conditions for cell growth and gentamicin production, the total productivity of gentamicin was increased significantly.

  • PDF