• 제목/요약/키워드: Irradiation Dose

검색결과 1,981건 처리시간 0.036초

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Radiation exposure dose in human blood lymphocytes as assessed by the CBMN assay

  • Ryu, Tae Ho;Kim, Jin-Hong;Kim, Jin Kyu
    • Journal of Ecology and Environment
    • /
    • 제37권4호
    • /
    • pp.195-200
    • /
    • 2014
  • The chances of accidental exposure are augmented as the application of ionizing radiation increases in various fields. Such accidental exposures may occur at nuclear power plants, laboratories, and hospitals. Cytogenetic assays have been used for estimating radiation dose in the situation of the accidents. The micronucleus assay has several advantages over the other cytogenetic methods as it is simple and fast. The present study aimed at investigation of the micronuclei frequencies in cytokinesis-block cells in human blood lymphocytes after ${\gamma}$-irradiation and at establishment of a standard dose response relationship. The samples of peripheral blood were obtained from 6 different donors aged between 24 and 30 years old. The bloods were irradiated in vitro with 0-5 Gy. A linear quadratic dose-response equation was obtained by scoring the micronuclei in binucleated cells; $y=27.87x^2+46.13x+2.08$ ($r^2=0.99$). Irradiation caused a significant decrease in the nuclear division index. Necrotic and apoptotic cells increased in number after irradiation in a dose-dependent manner. In conclusion, the conventional cytokinesis-block micronucleus assay has proven to be the great technique in biological dosimetry. Dose-response calibration curve derived from CMBN assay could be used to estimate the exposure dose during a radiological emergency.

감마선 조사한 잡곡류의 물리화학적, 미생물적 특성 변화 (Changes of Physicochemical and Microbiological Properties of Gamma-Irradiated Miscellaneous Cereals)

  • 손인숙;김미라
    • 동아시아식생활학회지
    • /
    • 제8권4호
    • /
    • pp.412-421
    • /
    • 1998
  • 보리, 옥수수, 대두, 팥 등에 1.2, 10.1, 30.5 kGy의 감마선 조사처리를 하였을 때 조사선량에 따른 잡곡류의 물리화학적, 미생물적 특성의 변화를 조사하였다. 시료의 수분함량과 조지방함량은 감마선 조사에 의해 유의적인 차이를 보이지 않았고, TBA가는 30.5 kGy로 조사한 보리와 옥수수에서 증가하였다. 미생물 검사에서 보리, 옥수수, 대두, 팥의 중온성균과 저온성균은 감마선 조사에 의해 그 수가 감소하였으며 초기오염도가 낮은 효모 및 곰팡이는 1.2 kGy의 저선량 조사로도 검출한계 이하로 사멸이 가능하였다. 옥수수를 제외한 잡곡류의 환원당은 감마선 조사에 의해 유의적으로 변하지 않았고 대두의 stachyose, raffinose, sucrose와 보리의 sucrose함량은 30.5 kGy 조사시 증가하였다. Riboflavin은 30.5 kGy로 조사한 팥을 제외하고는 감마선 조사에 의해 감소하지 않았다. 색도에서는 감마선 조사에 의해 팥분말의 b값이 증가하였고, 대두분 말의 L값은 감소하였다. 30.5 kGy로 조사한 보리분말의 L값, a값, b값은 약간 증가하였고, 옥수수 분말의 b값은 10.1 kGy와 30.5 kGy조사시 감소하였다.

  • PDF

Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers

  • Chu, Eun-Hee;Shin, Eun-Jung;Park, Hae-Jun;Jeong, Rae-Dong
    • 식물병연구
    • /
    • 제21권3호
    • /
    • pp.193-200
    • /
    • 2015
  • Gray mold caused by Botrytis cinerea is one of the most important postharvest fungal pathogens of cut flowers. Here, gamma irradiation, an alternative for phytosanitary purposes, and sodium dichloroisocyanurate (NaDCC) were used to control B. cinerea in a cut chrysanthemum (Chrysanthemum morifolium Ramat.) cultivar, 'Baekma', one of the cultivars susceptible to B. cinerea. Spore germination and mycelium growth of B. cinerea were inhibited by gamma irradiation in an inversely dose-dependent manner. A dose of 4 kGy completely inhibited the mycelium growth of B. cinerea. A significant change in flower quality (physical properties) on chrysanthemum was shown from gamma irradiation at over 0.2 kGy (p<0.05). Therefore, in this study, the integration of gamma ray (below 0.2 kGy) and NaDCC, an eco-friendly form of chlorine, was investigated to control the disease with low dose of gamma irradiation dose. Interestingly, the gamma irradiated flowers showed more disease severity than the non-irradiated flowers. The combined treatment of gamma irradiation and NaDCC does not affect the severity of the fungal disease, whereas only 70 ppm of NaDCC treatment showed a significantly reduced severity. These results suggest that only chlorination treatment can be applied to control B. cinerea in cut chrysanthemum flowers.

감마선 조사에 의한 hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 분해 (Decomposition of Hexahydro-1,3,5-trinitro-1,3,5-triazine by Gamma Ray Irradiation)

  • 이병진;이면주;김유리
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.731-741
    • /
    • 2004
  • The purpose of this study was to evaluate the potential of a gamma ray irradiation to decompose hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an aqueous solution. The decomposition reaction of RDX by gamma ray irradiation was a first-order kinetic over the applied initial concentrations (10-40mg/L). The dose constant was strongly dependent on the initial concentration of the RDX. The removal of RDX was more efficient at pH below 3 and at pH above 11 than at neutral pH (pH 5-9). The required irradiation dose to remove 99% of the RDX (40mg/L) was 4, 8 and 1 kGy, at pH 2, 7 and 13, respectively. The dose constant was increased by two folds and over twelve folds at pH 2 and 13, respectively, when compared with that at pH 7. When an irradiation dose of 20 kGy was applied, the removal efficiencies of TOC were 80, 57 and 91% at pH 2, 7 and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of RDX and formic acid was detected as an organic byproduct. The results showed that a gamma ray irradiation was an attractive method for the decomposition of RDX in an aqueous solution and it was found that a strong alkaline pH over 12 should be applied to the decomposition reaction of RDX.

방사선조사가 Porphyromonas gingivalis에 미치는 영향 (Effect of irradiation on the Porphyromonas gingivalis)

  • 이창환;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제38권1호
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose: The aim of this study was to observe a direct effect of irradiation on the periodontopathic Porphyromonas gingivalis (P. gingivalis). Materials and Methods: P. gingivalis 2561 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Changes in viability and antibiotic sensitivity, morphology, transcription, and protein profile of the bacterium after irradiation were examined by pour plating method, disc diffusion method, transmission electron microscopy, RT-PCR, and immunoblot, respectively. Results: Viability of irradiated P. gingivalis drastically reduced as irradiation dose was increased. Irradiated P. gingivalis was found to have become more sensitive to antibiotics as radiation dose was increased. With observation under the transmission electron microscope, the number of morphologically abnormal cells was increased with increasing of irradiation dose. In RT-PCR, decrease in the expression of fimA and sod was observed in irradiated P. gingivalis. In immunoblot, change of profile in irradiated P. gingivalis was found in a number of proteins including 43-kDa fimbrillin. Conclusion: These results suggest that irradiation may affect the cell integrity of P. gingivalis, which is manifested by the change in cell morphology and antibiotic sensitivity, affecting viability of the bacterium.

  • PDF

Photosynthetic activity and photoinhibition in seedlings of red pepper (Capsicum annuum L.) grown from low dose $\gamma$-irradiated seeds

  • Kim, Jae-Sung;Lee, Young-Keun;Lee, Hae-Youn;Baek, Myung-Hwa;Park, Youn-Il
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.397-399
    • /
    • 2002
  • The seedling height, leaf width and leaf length of pepper increased in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than the control. Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. Fv/Fm was decreased with increasing illumination time by 50% after 4 hours, while Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the low dose $\gamma$ radiation increased resistance of plants to photoinhibition.

  • PDF

방사선에 조사된 EPR 의 전기적 특성에 관한 연구 (A Study on Electrical properties of EPR by Irradiated by X-rays)

  • 이성일;김귀열;이호식;이희갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.565-568
    • /
    • 2002
  • The value of charge current, discharge current, $\varepsilon_r$' $\varepsilon_r"$, residual voltage was measured inorder to investigate electric properties in Ethylene Prophylene Rubber for is irradiated $CO^{60}\gamma$ ray 0-38.1 Mrad. The value of charge current and the discharging current of the EPR is influenced by $CO^{60}-{\gamma}$-irradiation dose The charging current and the discharging current of EPR increase, depending on the ratio of degradation. As the irradiation dose is increased, the peak of residual voltage moves to the slorter time. The properties specific electric constant due to time variation was appeared dispersion by plentiful $CO^{60}-{\gamma}$-irradiation dose. The increase of peak in $\varepsilon_r"$ is attrib uted to the irratiation dose almost proportionally.

  • PDF

방사선 조사에 따른 U-937 세포의 Ceruloplasmin 유전자에서 mRNA 발현 변화 (Effect of Radiation on mRNA Expression of Ceruloplasmin Gene)

  • 오연경;임희영;김종수;윤충효;김인규;윤병수
    • Toxicological Research
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 2004
  • Against environmental stress, ceruloplasmin which is a plasma protein, are believed to play central roles in antioxidant- or peroxidase-activity in blood stream to remove free radicals, which may be caused by exposing of $\gamma$-irradiation. In human U-937 cells exposed to $\gamma$-irradiation, the levels of mRNA in ceruloplasmin gene were measured on 0, 4, 12, 24 hr after exposing by using comparative RT-PCR (Reverse transcriptase-polymerase chain reaction) which was achieved to compare with house keeping genes such as $\beta$-actin and hprt. After $\gamma$-irradiation of 100 rads or 200 rads, the total quantities of RNA were increased as dose and time dependent manner. On the contrary, the variation of mRNA expression in ceruloplasmin was not found until 4 hr after irradiation. After 12 hr and 24 hr of irradiation, the levels of mRNA in ceruloplasmin were significantly increased as dose and time dependent manner than un-exposed cells.

열발광기를 이용한 양파와 마늘의 방사선 조사 여부 검지 (Application of Thermoluminescence to Detecting Post-Irradiation of Onion and Garlic)

  • 황금택;엄태붕
    • 한국식품영양과학회지
    • /
    • 제27권1호
    • /
    • pp.63-68
    • /
    • 1998
  • Irradiation can be utilized to inhibit sprouting of onions and garlic. Thermoluminescence(TL) is a potential method to detect post-irradiation of onions and garlic because they are irradiated with soil or dusts on them, from which minerals can be isolated for TL analysis. This study was to determine whether TL can be applied for the detection of post-irradiation of onions and garlic. Onions and garlic produced in Korea were irradiated in the range of 0.01~0.6kGy. Minerals isolated from the samples using sodium polytrungstate solution were used for TL analysis. The onions and garlic irradiated at 0.15kGy or higher could be detected with little errors. Minimum dose for the 2nd glow could be applied since the dose for the 2nd glow did not affect the results. The TL intensities of the temperature ranges of 229~295$^{\circ}C$ and 229~361$^{\circ}C$ and the maximum intensity provided more accurate information for the determination of the post-irradiation of onions and garlic.

  • PDF