• Title/Summary/Keyword: Iron-Oxide

Search Result 746, Processing Time 0.03 seconds

A Study on Kinetic of Volatilization Behavior of Metal Elements Contained in Electric Arc Furnace Dust (전기로 제강분진에 함유된 금속원소의 휘발거동에 대한 속도론적 연구)

  • Yoon, Jaehong;Yoon, Chihyun;Lee, Myungwon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.17-25
    • /
    • 2017
  • Electric arc furnace steelmaking dust has various physicochemical properties as volatile components generated in the melting process of steel scraps in an electric arc furnace, which is captured in oxide form as fine powder by reacting with oxygen in the air. In order to efficiently recycle these electric arc furnace dust, a kinetic basic experiment and a pilot production test were carried out in parallel. As a result, it was found that the electric arc furnace dust contain a large amount of Cl and alkali components, thus it was expected that the compounds have a great adverse effect on the actual operation for the recycling. It was confirmed that the volatilization behavior was progressing actively at $1100^{\circ}C$ and the electric arc furnace dust was melted at $1250^{\circ}C$. These results are the same as a result of pilot test for the formation behavior of zinc oxide and reduced iron. These results should be useful as basic data for designing the recycling plant of the electric arc furnace dust and establishing the operating conditions.

In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages

  • Lee, Jae Hoon;Ahn, Dong Uk;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1226-1236
    • /
    • 2018
  • Ovotransferrin (OTF) is a well-known protein of the transferrin family with strong iron chelating activity, resulting in its antimicrobial activity. Furthermore, OTF is known to have antioxidant, anticancer, and antihypertensive activities. However, there have been few studies about the immune-enhancing activity of OTF. In current study, we investigated the immune-enhancing activity of OTF using the murine macrophage cells in vitro. The effect of OTF on production of pro-inflammatory mediators and cytokines were determined using Griess assay and quantitative real-time PCR. Using Neutral Red uptake assay, we confirmed the effect of OTF on phagocytic activity of macrophages. Ovotransferrin significantly increased the production of nitric oxide (NO) and secretion of inducible nitric oxide synthase (iNOS) mRNA with no cytotoxic activity. Ovotransferrin (2 mg/mL) stimulated NO production up to $31.9{\pm}3.5{\mu}M$. Ovotransferrin significantly increased the mRNA expression levels of pro-inflammatory cytokines which are tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), Interleukin-$1{\beta}$ (IL-$1{\beta}$), and IL-6: OTF (2 mg/mL) treatment increased the secretion of mRNA for TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by 22.20-, 37.91-, and 6.17-fold of the negative control, respectively. The phagocytic activity of macrophages was also increased by OTF treatment significantly compared with negative control. Also, OTF treatment increased phosphorylation level of MAPK signaling pathways. These results indicated that OTF has immune-enhancing activity by activating RAW 264.7 macrophages via MAPK pathways.

Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline (토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Kim, Woosik;Kim, Cheolman;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.168-179
    • /
    • 2022
  • Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology (반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data ($Adj-R^2=0.944$). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was $530k{\Omega}{\cdot}cm$.

Experimental Study on Particle Temperature and CO/CO2 Emission Characteristics of Pulverized Coal Combustion Condition According to Coal Types in Blast Furnace (고로 내 미분탄 연소조건에서 탄종에 따른 입자온도와 CO/CO2 배출 특성에 관한 연구)

  • Cho, Young Jae;Kim, Jin Ho;Kim, Ryang Gyun;Kim, Gyu Bo;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.807-815
    • /
    • 2014
  • This study was performed using a laminar flow reactor that could replicate the combustion environment of pulverized coal in a blast furnace. Since a pulverized coal injection system was developed for iron making, the combustion characteristics of pulverized coal have been important in the iron and steel industry. The flame structure, particle temperature, and exhaust gas were investigated for different types of coal. The results of this study demonstrated that the combustion characteristics of coal are influenced by several properties of individual coals. In particular, the CO emission and volatile matter content of individual coals were found to have a strong influence on their combustion characteristics. Thus, this study found the properties of the coals to be significant and focused on the particle temperature and CO and $CO_2$ emissions.

Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea (광양 폐금광 수계에 형성된 철수산화물에 대한 광물학적 및 지구화학적 특성)

  • Park, Cheon-Young;Jeoung, Yeon-Joong;Kim, Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.208-222
    • /
    • 2001
  • Geochemical investigations on suspended amorphous iron oxide material from the Kwangyang gold mine and its surrounding area, Cheonnam, Korea have been carried out. The sediments samples were collected from 11 location along Kwangyang mine area and were air dried and sieved to -80 mesh. These samples consist mainly of iron, silicon and alumina. The Fe$_2$O$_3$ contents ranges from 17.9 wt.% to 72.3 wt.%. The content of Fe$_2$O$_3$ increase with decreasing Si, Al, Mg, Na, K, Mn, and Ti, whereas the contents of Te, Au, Ga, Bi, Cd, Hg, Sb, and Se increase in the amorphous stream sediments. Amorphous stream sediments have been severely enriched for As (up to 54.9 ppm), Bi (up to 3.77 ppm), Cd (up to 3.65 ppm), Hg (up to 64 ppm), Sb (up to 10.1 ppm), Cu (up to 37.1 ppm), Mo (up to 8.86 ppm), Pb (up to 9.45 ppm) and Zn (up to 29.7 ppm). At the upstream site, the Au content (up to 4.4 ppm) in the amorphous stream sediments are relatively high but those contents decrease with distance of mine location. The content of Ag (up to 0.24 ppm) were low in upstream site but those contents increase significantly in the downstream sites. The X-ray diffraction patterns of the samples have virtually no sharp and discrete peaks, indicating that some samples are amorphous or poorly-ordered. The quartz, goethite, kaolinite and illite were associated in amorphous stream sediments. The infrared spectra for amorphous stream sediments show major absorption bands due to OH stretching, adsorbed molecular water, sulfate and Fe-O stretching, respectively.

  • PDF

A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment (한국 전통 적색광물안료 울릉도석간주의 기능성 연구)

  • Do, Jin-Young;Kim, Soo-Jin;Lee, Sang-Jin;Ahn, Byung-Chan;Yun, Seong-Chul;Kim, Kwang-Jong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The main compositions of "Seokganju", a Korean traditional red mineral pigment, are iron oxides. To investigate its mineralogical and functional properties, we had got its ore from Juto cave in Ulreoung island, which was a famous field of it in Korean documents. The ore occurs as a paleosol between the olivine basalt and amphibole trachyte in discontinuously. It is reddish brown and yellowish brown and consists mainly of clay minerals with minor debris. Its reddish and yellowish brown color are due to the hematite and ferrihydrate, respectively. These iron oxides are precipitated as ferrihydrate from the ferrous water in the paleosol and partly changed to hematite. The color reproduced in timber by using seokganju pigment with traditional tools and methods is similar to that in heritage building. The moistureproofing and fire resistance of Ulreungdo seokganju is far better than that of artificial seokganju. Moreover, the combustion tests show that the artificial seokganju promote the ignition and combustion of the timber. Ulreungdo seokganju is regarded as a pigment with fungicidal efficacy because growth of two wood decay fungi (cov. and typ.) are inhibited in solid medium with it.

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Consideration of Making Techniques for Red Painted Roof Tiles from Presumed Site of Daetongsa in Gongju Using Nondestructive Analysis (비파괴 분석을 활용한 공주 대통사 추정지 출토 주칠흔 기와의 제작기술 검토)

  • Lee, Chan Hee;Lee, Gyu Hye;Jung, Je Won
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.315-325
    • /
    • 2020
  • The Daetongsa temple is the earliest temple to be constructed during the era of the Three Kingdoms in ancient Korea. The main architect, purpose, and name of the temple have been confirmed through ancient literature and archeological materials carved in the Chinese letter, Daetong, excavated around Gongju. However, the location and range of the temple have remained elusive and were discussed in various studies. In this study, we examine the roof tiles obtained from the presumed site of the Daetongsa temple. The tiles were found to contain traces of red paint (red pigments) on their surface and analyzed using nondestructive techniques. The results imply that roof tiles were made using clay tablets and wooden cylinders, with latticed cloth in between. Additionally, some wooden cylinders appeared to comprise numerous wooden plates tied together by strings. The clay tablets used to make the roof tiles were produced from the source clay via the sorting process. The traces of red paint on the surface of the roof tiles were verified to be traditional pigments used for painting wooden buildings. These pigments were extracted from red ocher or red clay (Seokganju), mainly consisting of iron oxide. In the literature, the location of provenance sites for Seokganju is estimated to be far from Gongju. However, the materials for extracting the red pigments were relatively easy to source because most rocks comprised iron oxides. Therefore, it is necessary to discuss the provenance of the red pigments around the presumed site of Daetongsa.

Titanium Geology and Metallurgical Processes from Applied Petrologic Viewpoints

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.89-98
    • /
    • 1978
  • Mineralogy, beneficiation, and processes of titanium ores are reviewed from petrographic viewpoints. The most important titanium minerals are ilmenite ($FeTiO_3$) and rutile ($TiO_2$). Ilmenite will play major role :for raw material, because rutile are rapidly diminishing. Thus, there is a need to develope a successful process for producing high grade Ti02 from ilmenite. Commercial, as well as R and D processes to treat more abundant ilmenite ores fall in three general classess: 1. Iron in ilmenite is partially or completely reduced and separated either physically or chemically. 2. Iron is reduced to ferrous state and chemically leached away from the titanium. 3. Ore is treated to make chlorides either selectively or with subsequent separation and purification of $TiC_4$. Routes and efficiencies of these process technologies are primarily influenced by the particular ore deposit to be mined and secondly by environmental considerations. One deposit parameters which influence ilmenite process technologies are: 1. Complexity of microtextures of ilmenite intergrown with Fe-oxide minerals. 2. Composition of concentrates; ilmenites contain minor amounts of substituted Mg, Mn, and V. These elements plus iron and gangue minerals can cause difficulties to complete reactions, substantial acid consumption, difficulties of removing waste solids, and waste disposal problems. Major contributions to be made by petrologists for process optimization are: characterization and interpretation of compositional and physical changes of raw materials and solids derived from process streams. These informations can play significant role in selecting and improving process steps for titania production.

  • PDF