• Title/Summary/Keyword: Iron sand

Search Result 155, Processing Time 0.038 seconds

Shearing Properties of Hard Metal Powder and Iron Powder in the Low Density Range

  • Jonsen, P.;Haggblad, H.A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1296-1297
    • /
    • 2006
  • Both plastic and elastic properties change dramatically from the beginning to the end of the compaction phase. Previous investigations have shown that powder transfer and high powder flow during initial compaction at low density affects the strength of the final component significantly. Investigated here are shear failure and elastic shear modulus in the low density range for hard metal powder and for pre-alloyed water atomized iron powder. Direct shear test equipment for sand and clay has been modified to measure the shearing properties of powder for an axial loading between 1 kPa and 500 kPa.

  • PDF

A Survey of Heavy Metal Concentrations in Casting Work Environment (일부 주조작업장 공기중 분진 중금속 농도)

  • Kim, young-Sik;Kim, Gyu-Kwang;Han, Hong
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 1992
  • A study was performed to measure the heavy metal concentrations of suspended particles in iron castings during February, 1990. The heavy metal concentrations were analyzed using patricles atomic absorption spectrophotometer. The results were as fellows 1. The concentrations of suspended paticles by casting process were at furnace 4.19mg/m$^{3}$ at pouring 2.93mg/m$^{3}$ at nonferrous furnace 3.90mg/m$^{3}$, at molding 1.17mg/m$^{3}$, jung ja 2.23mg/m$^{3}$, desanding 5.42mg/m$^{3}$, sand treatment 4.82mg/m$^{3}$, finishing 1,20mg/m$^{3}$. 2. Among the total of 8 iron casting workplaces, the concentrations Fe of furnace was 0.36mg/m$^{3}$, Cu of nonferrous furnace 0.02mg/m$^{3}$, Pb of pouring 0.02mg/m$^{3}$, Cr of desanding 0.01mg/m$^{3}$ and Mn of furnace 0.03mg/m$^{3}$.

  • PDF

Effect of Matrix Phase on the Abrasive Wear Behavior of the High Cr White Iron Hardfacing Weld Deposites (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 기지상의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.114-124
    • /
    • 1998
  • The effect of matrix phase (austenite, pearlite, martensite) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iorn hardfacing weld deposites has been investigated. In order to examine matrix phase, a series of alloys with different matrix phase by changing the ratio of Cr/C system by heat treatment were employed. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test(RWAT). Even though formation of pearlite phase in the matrix showed higher hardness than that of austenite, there was no observable difference in wear resistance between the pearlite and austenite phase for the same amount of chromium-carbide in the matrix. On the other hand, the formation of martensitic phase,, from heat treated austenitic alloys (high content of Cr), enhanced wear resistance due to its fine secondary precipitates.

  • PDF

Three Dimensional Solidification Analysis in Large Steel Castings by Modified Finite Difference Method (개량차분법에 의한 대형주강품의 3차원 응고해석)

  • Yoo, Seung-Mog;Lee, Doo-Ho;Kim, Jong-Ki;So, Chan-Young;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1991
  • A computer program which consists of pre-processor, main solidification simulator and post-processor has been developed for three dimensional solidification analysis of steel castings. The pre-processor is used for mesh generation in a small personal computing system. The modified finite difference method is adopted for the main solidification simulation algorithm. The post -processor graphically presents the simulation results and shows the formation of shrinkage defects. Several experiments on large steel castings in sand mold were carried out. The temperature variations in casting and mold with time are measured experimentally, and the results are compared with calculation results. Several numerical examples for the prediction of shrinkage cavity in large steel casting of SC42 and SCNCrM2 alloys are compared with experimental results. The effect of sleeve and chills on solidification patterns are also studied. Formation of shrinkage defects for the three cases of experimental castings are relatively well predicted by present model.

  • PDF

Continuous removal of phosphorus in water by physicochemical method using zero valent iron packed column (영가철 충진 컬럼을 이용한 연속적인 물리화학적 수중 인 제거)

  • Jeong, Jooyoung;Ahn, Byungmin;Kim, Jeongjoo;Park, Jooyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.439-444
    • /
    • 2013
  • Excessive phosphorus in aquatic systems causes algal bloom resulting in eutrophication, DO depletion, decline in recreational value of water and foul tastes. To treat wastewater containing phosphorus including effluent of wastewater treatment plant, the continuous experiments were performed by using electrochemical way. The spherical ZVI and silica sand which act as physical filter are packed at appropriate volume ratio of 1:2. Electric potential is applied externally which can be changed as per the operational requirement. The results indicate that optimum hydraulic retention time of 36 minutes (10 mL/min at 1 L reactor) was required to meet the effluent standards. Lower concentrations of phosphorus (<10 mg/L as phosphate) were removed by precipitation by contact with iron. Thus, additional electric potential was not required. In order to remove high concentration phosphorus around 150 mg/L as phosphate, external electric potential of 600 V was applied to the reactor.

Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides (철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거)

  • Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • This study evaluated treatability of soluble Mn(II) using multifunctional sand media simultaneously coated with iron and manganese. In the preparation of IMCS(Iron and Manganese Coated Sand), 0.05 M Mn(II) solution and Fe(III) solution was mixed with sand at pH 7. The mineral type of IMCS was identified as the mixture of ${\gamma}-MnO_2$, goethite and magnetite($F_{e3}O_4$). The contents of Mn and Fe coated onto sand were 826 and 1676 mg/kg, respectively. The $pH_{pzc}$ of IMCS was measured as 6.40. The removal of soluble Mn(II) using IMCS and oxidants such as NaOCl and $KMnO_4$ was investigated with variation of the solution pH, reaction time and Mn(II) concentration in a batch test. The removal of Mn(II) on IMCS was 34% at pH 7.4 and the removals of Mn(II) on IMCS in the presence of NaOCl(13.6 mg/L) at pH 7 and $KMnO_4$(4.8 mg/L) at pH 7.6 were 96% and 89%, respectively. The removal of Mn(II) using IMCS and oxidants followed a typical cationic type, showing a gradual increase of removal as the solution pH increased. The removal of Mn(II) was rapid in the first 6 hrs and then a constant removal was observed. The maximum removed amount of Mn(II) on IMCS-alone and IMCS in the presence of oxidants such as NaOCl(13.6 mg/L) and $KMnO_4$(4.8mg/L) were 833.3, 1428.6 and 1666.7 mg/kg, respectively. Mn(II) removal onto the IMCS in the presence of oxidants was well described by second-order reaction and Langmuir isotherm expression.

Geochemical and Mineralogical Characterization of Arsenic-Contaminated Soil at Chonam Gold Mine, Gwangyang (광양 초남 금 광산 비소오염 토양의 지화학적 및 광물학적 특성)

  • Kong, Mi-Hye;Kim, Yu-Mi;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.203-215
    • /
    • 2011
  • Geochemical and mineralogical properties of a contamited soil should be taken into account to decide a remediation strategy for a given contaminant because development and optimization of soil remedial technologies are based on geochemical and mineralogical separation techniques. The objective of this study was to investigate the geochemical and mineralogical characteristics of arsenic-contaminated soils. The arsenic-contaminated soil samples were obtained from Chonam gold mine, Gwangyang, Chonnam, Particle size analysis, sequential extraction, and mineralogical analyses were used to characterize geochemical and mineralogical characteristics of the As-contaminated soils. Particle size analyses of the As-contaminated soils showed the soils contained 17-36% sand, 25-54% silt, 9-28% clay and the soil texture were sandy loam, loam, and silt loam. The soil pH ranged from 4.5 to 6.6. The amount of arsenic concentrations from the sequential soil leaching is mainly associated with iron oxides (1 to 75%) and residuals (12 to 91%). Major minerals of sand and silt fractions in the soils were feldspar, kaolinite, mica, and quartz and minor mineral of which is an iron oxide. Major minerals of clay fraction were composed of illite, kaolinite, quartz, and vermiculite. And minor minerals are iron oxide and rutile. The geochemical and mineralogical analyses indicated the arsenic is adsorbed or coprecipitated with iron oxides or phyllosilicate minerals. The results may provide understanding of geochemical and mineralogical characteristics for the site remediation of arsenic-contaminated soils.

The Study on Material Characteristics of Slags Excavated from Iron Making Site (제철 유적 출토 철재(鐵滓)의 재료학적 특성 연구)

  • Kang, Yoon-Hee;Cho, Nam-Chul;Song, Hyeon-Jeong;Go, Hyeong-Sun
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.171-182
    • /
    • 2010
  • The slag excavated from Gyesil-ri in Gongju, Yeonje-ri in Cheongwon and Beopcheonsaji (temple) site in Wonju are analyzed by X-ray Fluorescence Analyzer, metallurgical microscope, SEM-EDS etc., for chemical composition and microstructure to figure out the raw material and the iron manufacturing technique. First of all, as a result of principal component analysis, the total Fe-content of slag from Gyesil-ri is 39 to 44% and the modified rate is 15 to 21%, which is common in ancient iron slag. Yeonje-ri site is found the ancient iron-smelting furnace. The total Fe-content of slag from Yeonje-ri is 41 to 43% and modified rate is 18~30%, which is also the general value in the ancient slag. However only slag is excavated in the residential area at Beopcheonsaji site and there is no iron making relic. In addition, the result of principal component analysis contains that the total Fe-content of Beopcheonsaji site is 52 to 57%, and modified rate is 8 to 14%. It shows that the total Fe-content of Beopcheonsaji site is higher than relic from Gyesil-ri and Yeonje-ri and the modified rate is lower than other sites. This results mean that recollecting rate of Fe in Beopcheonsaji site is lower than other sites. Also, as a result of minor elements analysis, the slag from Gyesil-ri has the higher level of Ti, V and Zr than other sites and the microstructure are observed as magnetite and ulvospinel, so that the raw material of slag is iron sand. But the slag from Yeonje-ri and Beopcheonsaji site are identified to use iron ore. As a result of microstructure observation, fayalite, gray-columnar crystal, is found in the slag from Yeonje-ri and big wustite as main phase is observed in the slag from Beopcheonsaji site. This study show that the slag from Yeonje-ri is made of smelt ash produced during smelting works and the slag from Beopcheonsaji site is made of forging ash produced during forging work concerning the excavated location and the microstructure.

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell (영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구)

  • Jeong, Joo-Young;Kim, Han-Ki;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.79-84
    • /
    • 2012
  • Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장 사여과지의 이단이중여과재 시스템으로의 개량)

  • Woo, Dal-Sik;Kim, Jooneon;Hwang, Byung-Gi;Chae, Su-Kweon;Jo, Kwanhyung
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2014
  • This study aimed for evaluating the applicability of the two stage dual media filtration system in field water treatment plant. The field plant of two stage and dual media filtration system was operated for 2 months. Average iron concentrations of the settled water, existing filtered water and second stage filtered water was 0.041 mg/L, 0.007 mg/L and 0.005 mg/L, respectively. Removal efficiency of iron concentration in the second stage is appropriately 35% more than in existing filtered water. Also removal efficiency of residual chlorine in the dual media filtration system is relatively 42.3% more than in existing filtered water due to adsorption of activated carbon, but the removal of ammonia nitrogen by adsorption is insufficient. Average concentrations of THM and chloroform in the settled water are 0.033 mg/L, 0.026 mg/L, respectively and in existing filtered water are 0.023 mg/L and 0.023 mg/L. Average concentrations of THM and chloroform in the dual media filtration system are 0.008 mg/L and 0.013 mg/L. Therefore removal efficiency of THM concentration in second stage is more than 66.4% in existing filtrated water. Also removal efficiency of chloroform in the dual media filtration system is more than 50.0% in existing filtered water because of the adsorption of activated carbon. In this case backwashing period in dual stage system is 4~5 days, but in existing filtration system is 1~2 days.