• Title/Summary/Keyword: Iron removal

Search Result 445, Processing Time 0.03 seconds

Ex-situ Reductive Dechlorination of Carbon Tetrachloride by Iron Sulfide in Batch Reactor

  • Choi, Kyung-Hoon;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • Ex-situ reductive dechlorination of carbon tetrachloride (CT) by iron sulfide in a batch reactor was characterized in this study. Reactor scaled-up by 3.5 L was used to investigate the effect of reductant concentration on removal efficiency and process optimization for ex-situ degradation. The experiment was conducted by using both liquid-phase and gas-phase volume at pH 8.5 in anaerobic condition. For 1 mM of initial CT concentration, the removal of the target compound was 98.9% at 6.0 g/L iron sulfide. Process optimization for ex-situ treatment was performed by checking the effect of transition metal and mixing time on synthesizing iron sulfide solution, and by determining of the regeneration time. The effect of Co(II) as transition metal was shown that the reaction rate was slightly improved but the improvement was not that outstanding. The result of determination on the regeneration time indicated that regenerating reductant capacity after $1^{st}$ treatment of target compound was needed. Due to the high removal rates of CT, ex-situ reductive dechlorination in batch reactor can be used for basic treatment for the chlorinated compounds.

Removal of Uranium from Uranium Plant Wastewater Using Zero-Valent Iron in an Ultrasonic Field

  • Li, Jing;Zhang, Libo;Peng, Jinhui;Hu, Jinming;Yang, Lifeng;Ma, Aiyuan;Xia, Hongying;Guo, Wenqian;Yu, Xia
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.744-750
    • /
    • 2016
  • Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of $2,772.23{\mu}g/L$. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results.

ZanF를 이용한 질산성 질소 환원 및 암모늄부산물 동시제거

  • 이승학;이광헌;이성수;박준범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • Reduction of nitrate by zero valent iron (Fe$^{0}$ ) has been previously studied, but the proper treatment for the by-product of ammonium has not been reported. However, in terms of nitrogen contamination, ammonium may be regarded as another form of nitrogen contaminants since it can be oxidized to nitrate again under aerobic conditions. This study is focused on simultaneous removal of nitrate and its by-product of ammonium, with the ZanF (Zeolite anchored Fe), a product derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH condition with ZanF, iron filing, Fe(II)-sorbed zeolite, and pure zeolite to estimate the nitrate reduction and the ammonium production. At higher pH, removal rate of nitrate was reduced in both ZanF and iron filings. ZnF removed 60 % of nitrate at initial pH of 3.3 with no production of ammonium, while iron filing showed equivalent production of ammonium to the reduced amount of nitrate. In terms of nitrogen contamination, ZanF removed about 60 % and 40 % at initial pH of 3.3 and 6, respectively, while iron filing presented negligible removal against total nitrogen including nitrate and ammonium.

  • PDF

A Role of Dissolved Iron ion in Combined Fenton Reaction for Treatment of TNT Contaminated Soil (오염토양처리를 위한 혼합 Fenton 공정에서 용존 철이온이 오염산화처리에 미치는 역할에 관한 연구)

  • Seo, Seung-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.76-82
    • /
    • 2006
  • Fenton's reaction are difficult to apply in the field due to the low pH requirements for the reaction and the loss of reactivity caused by the precipitation of iron (II) at neutral pH. Moreover, Fenton-like reactions using iron mineral instead of injection of iron ion as a catalyst are operated to get high removal result at low pH. Because hydroxyl radical can generate at the surface of iron mineral, there are competition with a lot of hydroxide at around neutral pH. On the other side, to operate Fenton's reaction series at neutral pH, modified Fenton reaction is suggested. The complexes, composed by iron ions (ferrous ion or ferric ion)-chelating agent, could be acted as a catalyst and presented in the solution at neutral pH. However, modified Fenton reaction requires a lot of hydrogen peroxide. Accordingly, the purpose of this experiment was to effectively combine Fenton-like reaction and modified Fenton reaction for extending application of Fenton's reaction. i.e., injecting chelating agents in Fenton-like reaction at around neutral pH is increasing the concentration of dissolved iron ion and highly promoting the oxidation effect. 2,4,6-trinitrotoluene (TNT) was used as a probe compound for comparing reaction efficiencies in this study. If the concentration of dissolved iron ion in combined Fenton process were existed more than 0.1 mM, the total TNT removal were increased. Magnetite-NTA system showed the best TNT removal (76%) and Magnetite-EDTA system indicated about 56% of TNT removal. The results of these experiments proved more promoted 40-60% of TNT removal than Fenton-like reaction's.

Manufacturing of a Treatment Agent for Corrosion Oxides of Iron Relics (철기 유물 부식 산화물 처리제의 제조)

  • Yang, Eun Hee;Han, Won-Sik;Choi, Kwang-Sun;Hong, Tae-Kee
    • Korea Science and Art Forum
    • /
    • v.30
    • /
    • pp.251-261
    • /
    • 2017
  • Metal is a material that has exerted a lot of influence on the development of human cultures, and has closely connected with our life from the past to the present. Types of metal we have used from the prehistoric times are varied, and iron relics take the largest percentage of metal relics excavated in our country. The biggest threat to the existence of iron relics ranging from excavated relics to the ones that are transmitted is the process of corrosion, and physical removal has been used the most for removing corroded oxides. For details for removal of corrosion oxides, this thesis aimed to research on the chemical corrosion oxides remover that protects parent material of iron relics but treats corrosion oxides only. For safe and effective removal of corrosion oxides of iron relics, this study was conducted aiming at finding the possibility of and optimized composition for removal of iron relics corrosion oxides by manufacturing new acid, alkaline and neutral oxides removers and changing their composition variously, exploring the possibility by applying the agents to modern relics. The results of this study are as follows: First, the acid solution removed only some part of corrosive substance oxidized on the surface of metal specimen. Second, the application of each of alkaline and neutral solution resulted in remaining black-colored corrosive substance, but it was removed when the quantity of the solution and the duration of application are increased. Third, All the three solutions did not cause any damage to parent material in the course of application, and showed the result that they are capable of removing unstable oxide layer while protecting parent material and stable corrosive layer as the solutions would be able to deal with situation by a relic only through the control of concentration of solution and duration of application.

Removal of Trichloroethylene, Cr(VI) and Nitrate in Leachate by Bentonite and Zero Valent Iron (벤토나이트와 영가 철에 의한 침출수 내의 Trichloroethylene, Cr(VI), 질산성질소의 제거)

  • Lee, Hyun-Joo;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.23-31
    • /
    • 2004
  • Trichloroethylene(TCE), Cr(VI), and nitrate removal efficiency of a novel reactive barrier were experimented, and the types of corrosion species that form on the surface of the iron and bentonite as a result of reaction were investigated with Raman spectrophotometer. The reactive barrier is composed of bentonite and zero valent iron(ZVI), and this can substitute conventional geosynthetic clay liners for landfill leachate. Tests were performed in batch reactors for various ZVI content (0, 3, 6, 10, 13, 16, 20, 30, 100 w/w %) and pH. The reduction rates and removal efficiencies of TCE, Cr(VI) and nitrate increase at pH 7 buffered solution. As ZVI content increases, TCE, Cr(VI) and nitrate removal efficiencies increase. From the result of analysis with Raman spectrophotometer, Fe-oxides were observed, which are strong adsorbers of cantaminants. Magnetite can be also beneficial to the long term performance of the iron metal.

  • PDF

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.

Synthesis of magnetite iron pumice composite for heterogeneous Fenton-like oxidation of dyes

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.161-173
    • /
    • 2020
  • The removal of two dyes, namely Methylene Blue (MB) and Reactive Brillant Red (RR) from aqueous solution was investigated using magnetite iron coated pumice (MIP) composite in the Fenton-like oxidation process. A weight ratio of 2.5 g (with the molar ratio of Fe3+ to Fe2+ to be 2) (5%) of iron to the total pumice (50 g) was enabled during synthesis of catalyst. Surface composition and characteristics of the catalyst were assessed by SEM-EDX, FT-IR, Raman spectral analysis. The effect of the amount of pumice solely used or MIP, H2O2 concentration, pH and initial concentration of MB or RR dyes on Fenton-like process efficiency was investigated. EDAX spectrums of pumice and MIP showed that oxygen and silisium are the major elements. The Fe content of MIP increased to 2.24%. SEM, FT-IR and Raman spectrums confirmed the impregnation of Fe on pumice surface. The experimental results revealed that high removal rates of dyes could be obtained using MIP that demonstrated a higher stability for removal of MB dye. pH affected the removal efficiency of both dyes and the degradation of both dyes was sharply dropped when pH was increased above 4. The removal of dyes did not significantly change with increasing H2O2 concentration. Degradation rates of both MB and RR dyes increased 3.3 and 2.8 times with the use of MIP compared to pumice alone, respectively. Furthermore, MIP enabled a good removal efficiency at higher dye concentrations. It can be emphasized that MIP composite can be used in the heterogeneous Fenton-like systems considering the economic and easily separation aspects.

Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem (우슬 줄기 부산물을 이용한 아연과 철 이온의 제거효율 향상)

  • Choi, Suk Soon;Choi, Tay Ryeong;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.90-95
    • /
    • 2022
  • In the present work, biochar was prepared using Achyanthes japonica stem as a by-product of herbal medicine. In order to apply the prepared biochar to water treatment process, the adsorption characteristics of zinc and iron ions dissolved in water were investigated. When the experiments were performed for 2 h to remove 70 and 100 mg/L of zinc ions, the adsorption amounts of 32.3 and 31.0 mg/g were obtained, respectively. It was also found that the adsorption amount of Achyanthes japonica stem biochar for the removal process of zinc ion was three times higher than that of the activated carbon. In addition, when the experiments were performed for 2 h to treat 70 and 100 mg/L of iron ions, high adsorption amounts of 50.1 and 54.3 mg/g were achieved, respectively. In order to further enhance the removal efficiency of zinc and iron ions, a steam activation process was performed on the biochar of Achyanthes japonica stem. As a result, the removal efficiencies of 70 and 100 mg/L of zinc ions increased to 80 and 60%, respectively. Also, the removal efficiencies of 70 and 100 mg/L of iron ions were improved to 100 and 82%, respectively. In addition, when the biochar of Achyanthes japonica stem with a steam activation was compared with the untreated biochar of Achyanthes japonica stem, the specific surface area increased 37.3 times, and the total and macroporpous pore volumes were improved by 28.4 and 136 times, respectively. Therefore, the results can be used for economically and practically adsorbing zinc and iron ions contained in water.

Heavy Metal Removal from Drinking Water using Bipolar Surface Modified Natural Mineral Adsorbents (천연광물의 양극성 표면개질을 이용한 상수원수 중 중금속제거 특성)

  • Kim, Nam-youl;Kim, Younghee
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.561-568
    • /
    • 2019
  • Objectives: The most commonly detected heavy metals in rocks and soils, including Pb, Cd, Cu, Fe, Mn and As, are representative pollutants discharged from abandoned mines and have been listed as potential sources of contamination in drinking water. This study focused on increasing the removal efficiency of heavy metals from drinking water resources by surface modification of natural adsorbents to reduce potential health risks. Methods: Iron oxide coating and graft polymerization with zeolites and talc was conducted for bipolar surface modification to increase the combining capacity of heavy metals for their removal from water. The removal efficiency of heavy metals was measured before and after the surface modification. Results: The removal efficiency of Pb, Cu, and Cd by surface modified zeolite showed 100, 92, and 61.5%, respectively, increases compared to 64, 64, and 38% for non-modified zeolite. This implies that bipolar surface modified natural adsorbents have a good potential use in heavy metal removal. The more interesting finding is the removal increase for As, which has both cation and anion characteristics showing 27% removal efficiency where as non-modified zeolite showed only 2% removal. Conclusions: Zeolite is one of the most widely used adsorptive materials in water treatment processes and bipolar surface modification of zeolite increases its applicability in the removal of heavy metals, especially As.