• Title/Summary/Keyword: Iron removal

Search Result 445, Processing Time 0.023 seconds

Removal of Arsenic from Leachate of Tailing using Laboratory-synthesized Zerovalent Iron

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo;Park, Won-Jeong;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • Feasibility of laboratory-synthesized zerovalent iron was investigated to remove arsenic from leachates of tailings taken from an Au-Ag abandoned mine. The tailings were seriously contaminated with arsenic, and its potential adverse effect on the ecosystems around the mine seems to be significantly high. Long-term column experiments were conducted for about 3.5 months to evaluate the effectiveness of the synthesized zerovalent iron for removal of arsenic. Over than 95% removal efficiency of As was observed in the zerovalent iron mediated tests. In addition, the XRD data suggest that the corrosion products of ZVI were identified magnetite, maghemite, goethite, and lepidocrocite, all of which support Fe(II) oxidation as an intermediate step in the zerovalent iron corrosion process. The results indicate that arsenic can be removed from the tailing-leachate by the mechanism of coprecipitation and/or adsorption onto those iron oxides formed from ZVI corrosion.

Iron Mixed Ceramic Pellet for Arsenic Removal from Groundwater

  • Shafiquzzam, Md.;Hasan, Md. Mahmudul;Nakajima, Jun
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.163-168
    • /
    • 2013
  • In this study, an innovative media, iron mixed ceramic pellet (IMCP) has been developed for arsenic (As) removal from groundwater. A porous, solid-phase IMCP (2-3 mm) was manufactured by combining clay soil, rice bran, and Fe(0) powder at $600^{\circ}C$. Both the As(III) and As(V) adsorption characteristics of IMCP were studied in several batch experiments. Structural analysis of the IMCP was conducted using X-ray absorption fine structure (XAFS) analysis to understand the mechanism of As removal. The adsorption of As was found to be dependent on pH, and exhibited strong adsorption of both As(III) and As(V) at pH 5-7. The adsorption process was described to follow a pseudo-second-order reaction, and the adsorption rate of As(V) was greater than that of As(III). The adsorption data were fit well with both Freundlich and Langmuir isotherm models. The maximum adsorption capacities of As(III) and As(V) from the Langmuir isotherm were found to be 4.0 and 4.5 mg/g, respectively. Phosphorus in the water had an adverse effect on both As(III) and As(V) adsorption. Scanning electron microscopy results revealed that iron(III) oxides/hydroxides are aggregated on the surface of IMCP. XAFS analysis showed a partial oxidation of As(III) and adsorption of As(V) onto the iron oxide in the IMCP.

A comparative study on applicability of nano-sized iron(II, III) oxide in ultrasonicated Fenton process

  • Sahinkaya, Serkan;Yakut, Sennur Merve
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • Fenton process is one of the most effective advanced oxidation processes for the removal of pollutants from wastewater. In this study, while ferrous iron was used in conventional Fenton process (CFP); nano-sized iron(II, III) oxide was experienced in modified Fenton process (MFP) as a new catalyst alternative. In order to enhance their oxidation efficiencies, both CFP and MFP were combined with ultrasonication at 53 kHz fixed frequency. Thus, the influences of both catalyst iron species and ultrasonication on color and chemical oxygen demand (COD) removals from synthetic textile wastewater including Maxilon Red GRL 200% dyestuff were investigated experimentally. While the COD and color removal rates were found as 72.5% and 69.7% via CFP; they were 87% and 75.8% by ultrasonicated CFP, respectively. The color and COD removals were 40.6% and 64.8% via MFP, and 49.9 and 73.1% by ultrasonicated MFP, respectively. Therefore, it was found that the simultaneously usage of ultrasonication with CFP and MFP was improved the COD and color removal efficiencies and oxidation rates even at lower H2O2 dosages, compared to individual CFP and MFP. Moreover, the color and COD removal kinetics were also modelled mathematically and compared in the study.

Optimization of Cu, Hg and Cd removal by Enterobacter cloacae by ferric ammonium citrate precipitation

  • Singh, Rashmi R.;Tipre, Devayani R.;Dave, Shailesh R.
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.283-292
    • /
    • 2014
  • Iron precipitating organisms play a significant role in the formation of ferric hydroxide precipitate, which acts as strong adsorbent for toxic metal. In this respect four different iron precipitating cultures were isolated from Hutti gold mine surface winze water sample on citrate agar medium. The best isolate was screened out for metal removal study on the basis of fast visual iron precipitation. The selected isolate was identified as Enterobacter sp. based on routine biochemical tests and Biolog GN microplate results and as Enterobacter cloacae subsp. dissolvens by 16S rRNA gene sequence analysis (GenBank accession number EU429448). Influence of medium composition, medium initial pH, the influence of inoculum size, effect of various media and ferric ammonium citrate concentration were studied on metal removal in shake flask experiments. Under the optimized conditions studied, E. cloacae showed $94{\pm}2$, $95{\pm}2$ and $70{\pm}2%$ of cadmium, copper and mercury removal from a simulated waste in shake flask studies. In lab scale column reactor more than 85% of copper and mercury removal was achieved.

Phosphorus Removal (Characteristics by Anoxic Oxic Process) by Anoxic and Oxic Processed Combined with Iron Electrolysis (철 석출장치가 결합된 무산소.호기공정에 의한 인 제거 특성)

  • Kim, Min-Ho;Kim, Young-Gyu;Kim, Soo-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.502-509
    • /
    • 2010
  • In this study, the (phosphorous removal) the characteristics of phosphorous removal due to (the iron compound precipitated) iron compound precipitation by iron electrolysis in (the anoxic. oxic process) anoxic and oxic processes (equipped with the) in an iron precipitation device were analyzed. During the device operation period, the average concentration of BOD, T-N, and T-P were 219.9 mg/l, 54.6 mg/l and 6.71 mg/l, respectively. The BOD/$COD_{Cr}$ ratio was 0.74, and the BOD/T-N and BOD/T-P ratios were 4.0 and 32.8, respectively. The removal rate of (the organic matters) organic matter (BOD and $COD_{Cr}$) was very high at 91.6% or higher, and that of nitrogen was 80.5%. The phosphorous concentration (of the final) in the treated water was 0.43 mg/l (0.05-0.74 mg/l) on average, and the removal efficiency was high at 90.8%. The soluble T-P concentrations in (an) the anoxic reactor, oxic reactor (II) and final treated water were 1.99 mg/l, 0.79 mg/l and 0.43 mg/l, respectively, which indicated that the phosphorous concentration in the treated water was very low. Regardless of the changes in the concentrations of (organic matters) organic matter, nitrogen and phosphorous in the influent, the quality of the treated water was relatively stable and high. The removal rate of T-P somewhat increased with the increase in the F/M ratio in the influent, and it also linearly increased in proportion to the T-P loading rate in the influent. In the treatment process used in this study, phosphorous was removed (using) by the precipitated iron oxide. Therefore, the consumption of organic (matters) matter for biological phosphorus removal was minimized and (most of the organic matters were) was mostly used as the organic carbon source for the denitrification in the anoxic reactor. This (can be an economic) treatment process (without the need for the supply of additional organic matters) is economic and does not require the supply of additional organic matter.

ICS(Iron oxide Coated Sand)를 이용한 비소 제거

  • 최형진;장윤영;양재규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.314-317
    • /
    • 2003
  • The overall objective of the adsorption study of arsenic was to elucidate the ability of iron coated sand(ICS), synthesized in the laboratory, to remove arsenic from polluted waters. Batch tests were conducted to provide a relation between arsenic removal and iron content of ICSs. The ICS, developed in the laboratory by coating iron onto the surface of ordinary sand by a simple and easy process has proved as an effective medium for use in removal of arsenic from waters over a wide range of particle sizes of ICS. The composite media is inexpensive to prepare and could serve as the basis of a useful arsenic removal process in variety settings.

  • PDF

A Study on Color Treatment of Dyeing Wastewater with Bittern+Iron(II) chloride (간수+염화일철을 이용한 염색폐수 색도처리에 관한 연구)

  • 김만구;서명포
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 2000
  • Color removal of dyeing wastewater is becoming more important due to intensive limitation on color unit of effluent water, so this study was to investigate an efficient color removal of dyeing wastewater. We found that bittern+iron chloride(II) inorganic coagulant developed by Kabool research center is much higher than any other inorganic coagulants for color removal. Optimum pH of this coagulant was 10.5 and removed more than 90% for color removal efficiency. The results showed that COD and color unit of effluent water was average 60mg/L and 200~250 units when continuous activated sludge test after coagulation with this coagulant has done. From the results of the experiments, the application of bittern+iron chloride(II) inorganic coagulant can save the operating cost of wastewater treatment plants.

  • PDF

Degradation of energetic compounds using an integrated zero-valent iron-Fenton process

  • Oh Seok-Young;Kim Byung J.;Chiu Pei C.;Cha Daniel K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.493-500
    • /
    • 2003
  • The effect of reductive treatment with elemental iron on the extent of mineralization by Fenton oxidation was studied for the explosive 2,4,6-trinitrotoluene (TNT) and hexahydro-l,3,5-trinitro-l,3,5-triazine (RDX) using a completely-stirred tank reactor (CSTR). The results support the hypothesis that TNT and RDX are reduced with elemental iron to products that are oxidized more rapidly and completely by Fenton's reagent. Iron pretreatment enhanced the extent of TOC removal by approximately $20\%\;and\;60\%$ for TNT and RDX, respectively. Complete TOC removal was achieved for TNT and RDX solutions with iron pretreatment under optimal conditions. On the other hand, without iron pretreatment, complete mineralization of TNT and RDX solutions were not achieved even with much higher $H_2O_2$ and $Fe^{2+}$ concentrations. The bench-scale iron treatment-Fenton oxidation integrated system showed more than $95\%$ TOC removal for TNT and RDX solutions under optimal conditions. The proposed zero-valent iron-Fenton process was evaluated with pink water from the Iowa Army ammunition plant. Results from batch and column experiments show that TNT, RDX, and octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) were completely removed from the pink water and that triaminotoluene (TAT) and ${NH_4}^+$ were recovered as products in reduction with zero-valent iron. By using an integrated system, $83.3\pm4.2\%$ of TOC was removed in a CSTR with 10 mM of $Fe^{2+}$ and 50 mM of $H_2O_2$. These results suggest that the reduction products of TNT and RDX are more rapidly and completely mineralized by Fenton oxidation and that a sequential iron treatment-Fenton oxidation process may be a viable technology for pink water treatment.

  • PDF

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

Recovery of Ammonium Salt from Nitrate-Containing Water by Iron Nanoparticles and Membrane Contactor

  • Hwang, Yu-Hoon;Kim, Do-Gun;Ahn, Yong-Tae;Moon, Chung-Man;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • This study investigates the complete removal of nitrate and the recovery of valuable ammonium salt by the combination of nanoscale zero-valent iron (NZVI) and a membrane contactor system. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The main end-product of nitrate reduction by NZVI was ammonia, and the solution pH was stably maintained around 10.5. Effective removal of ammonia was possible with the polytetrafluoroethylene membrane contactor system in all tested conditions. Among the various operation parameters including influent pH, concentration, temperature, and contact time, contact time and solution pH showed significant effects on the ammonia removal mechanism. Also, the osmotic distillation phenomena that deteriorate the mass transfer efficiency could be minimized by pre-heating the influent wastewater. The ammonia removal rate could be maximized by optimizing operation conditions and changing the membrane configuration. The combination of NZVI and the membrane contactor system could be a solution for nitrate removal and the recovery of valuable products.