• Title/Summary/Keyword: Iron particle

Search Result 361, Processing Time 0.024 seconds

Lubrication Characteristics of Nano-oil with Different Surface Hardness of Sliding Members (나노 윤활유를 이용한 압축기 습동부 재질의 경도에 따른 윤활특성 평가)

  • Han, Young-Cheol;Ku, Bon-Cheol;Lee, Kwang-Ho;Hwang, Yu-Jin;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.916-921
    • /
    • 2009
  • In this study, lubrication characteristics of sliding members were compared with the change of the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35, AISI 60) and nickel chromium molybdenum steel (AISI 4320). The Friction coefficients and the temperature variations of on the frictional surfaces were measured by disk-on-disk tribotester under the condition of fixed rotating speed. The friction surfaces were observed by scanning electron microscope (SEM). In the results, the friction coefficients of the disk surface were increased as hardness difference was increased. The friction coefficient lubricated in nano-oil was less than mineral oil. This is because a spherical nano particle plays a tiny ball bearing between the frictional surfaces, improved the lubrication characteristics.

  • PDF

The Study on the Recovery Process of Zinc Metal from EAF Dust by Chemical Treatment (EAF 분전의 화학적처리에 와한 금속아연의 제조에 관한 연구)

  • Jeong, Rae-Youn;Lee, Jin-Hui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.208-215
    • /
    • 2010
  • EAF dust which is contained around 30% of zinc, 15% of iron and 3% of lead individually, is chemically treated by ammonium chloride, ammonia water, ammonia gas and carbon dioxide, and also tested and identified the ratios of the recovery of In by applied the variations of particle size, pH and heating temperature as well, in order to getting optimized recovery of the In metal after performing all of those processes. Experimental results showed that the rate of Zn recovery is 97% when the mixture of 1.3 of $NH_4Cl$/EAF is heated to the temperature of $400^{\circ}C$ and leached by water, and 95% recovery of In when ammonia gas and carbon dioxide is added simultaneously and adjust the 9.5 of pH to the same mixture above. For the purpose of remove the impurities in the mixed sample, which is prepared by the two samples, indicated above showing as the ratio of 95% and 97% recovery, in case of applied the cementation process to it, and also by electrolytic process, produced the In plate of 95~97%, and acquired 99-99.5% of In metal ingot finally by applied the heating process at $470{\sim}500^{\circ}C$.

The Properties of Spin Valves with a Partially Oxidized Fe or CoFe Ultra-Thin Layer Inserted in the Magnetic Layers

  • In, Jang-sik;Han,Yoon-sung;Kim, Sung-hoon;Shim, Jae-chul;Hong, Jong-ill
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.115-118
    • /
    • 2006
  • Co-ferrite nanoparticles have been synthesized by the decomposition of iron(III) acetylacetonate, $Fe(acac)_3$ and Co acetylacetonate, $Co(acac)_2$ in benzyl/phenyl ether in the presence of oleic acid and oleyl amine at the refluxingtemperature of $295^{\circ}C$/$265^{\circ}C$ for 30 min. before cooling to room temperature. Particle diameter detected by PSA can be turned from 4 nm to 20 nm by seed-mediated growth and reaction conditions. Structural and magneticcharacterization of Co-ferrite were measured by use of HRTEM, SAED (selected area electron diffraction), XRD and SQUID. The as-synthesized Co-ferrite nanoparticles have a cubic spinel structure and coercivity of 20 nm $CoFe_{2}O_{4} nanoparticles reached 1 kOe at room temperature and 18 kOe at 10 K.

Self-healing Anticorrosion Coatings for Gas Pipelines and Storage Tanks

  • Luckachan, G.E.;Mittal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.209-216
    • /
    • 2016
  • In the present study, chitosan based self-healing anticorrosion coatings were prepared by layer by layer (lbl) addition of chitosan (Ch) and polyvinyl butyral (PVB) on mild carbon steel substrate. Chitosan coatings exhibited enhanced coating stability and corrosion resistance in aggressive environments by the application of a PVB top layer. Chitosan layer in the lbl coatings have been modified by using glutaraldehyde (Glu) and silica ($SiO_2$). Performance of different coatings was tested using electrochemical impedance spectroscopy and immersion test. The best anticorrosion performance was observed in case of 10 % Ch_$SiO_2$_PVB coatings, which withstand immersion test over 25 days in 0.5 M salt solution without visible corrosion. 10 % Ch_$SiO_2$ coatings without the PVB top layer didn't last more than 3days. Application of PVB top layer sealed the defects in the chitosan pre-layer and improved its hydrophobic nature as well. Raman spectra and SEM of steel surfaces after corrosion study and removal of PVB_Ch/Glu_PVB coatings showed a passive layer of iron oxide, attributing to the self-healing nature of these coatings. Conducting particle like graphene reinforcement of chitosan in the lbl coatings enhanced corrosion resistance of chitosan coatings.

Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake (의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안)

  • Hwang, Hwan-Min;Yi, Geon-Ho;Kim, Mi-Yeon;Kim, Dong-Jin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.

Nonmetallic Inclusion in the Large Steel Ingot Casting Process (대형강괴 주조공정 중 비금속개재물 저감연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.52-56
    • /
    • 2008
  • Inclusions in forged large steel ingots of plan carbon steel and tool steel are investigated using optical microscop observation and WDX analysis. The large nonmetallic inclusions which is over $30\sim300{\mu}m$ in their diameter were observed in the samples that has been no good on a nondestructive test. The most of the inclusions were consist of some kind of oxides, ${Al_2}{O_3}$, $SiO_2$, CaO, MgO in forms of particles and glassy with an iron particles. The experimental large steel ingot was cast with a pouring temperature which is about ten centigrade higher than the field standard. The inclusions were observed in the test ingot are the smaller than that was in a usual forged steel ingot and is spherical shape with a glassy agglomerated ${Al_2}{O_3}-SiO_2-CaO-MgO$ particle. The pouring temperature is affected on removing the nonmetallic inclusions during the solidification by a floating mechanism.

  • PDF

Characteristics of Epoxy-Granite Composite Material For Ultra-Precision Machine Bed Structures (초정밀 가공기계 베드 구조물용 에폭시-그래나이트재의 특성에 관한 연구)

  • Kim, Jong-Ho;Won, Si-Tae;Maeng, Huee-Young;Park, Yeong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.74-84
    • /
    • 1990
  • The machine tool structures for ultra-precision machining muxt be manufactured with materials which have high static and dynamic stiffness, high damping, a long term dimensional and thermal stability. This study aims at the development of new composite material Epoxy-Granite which exhibits the satisfactory characteristics as a material of ultra-precision mchine tool bed. The Epoxy-Granite testpieces that use epoxy resins as a binder and granite particles as a aggregate have been manufactured so as to examine the material properties about mechanical, thermal and damping characteristics. Experiments were carried out to obtain the proper manufacturing conditions of Expoxy-Granite specimens by varying the several testing conditions such as types of epoxy resins, particle sizes of granite and mixture ratio of epoxy resin and aggregate. Also, when Epoxy-Granite was compared with cast iron, GRANITAN which was imported from CMS of U.K. and granite materials, it has exhibited the superior or almost the same mechanical and damping properties and thermal conductivity, except for the thermal expansion.

  • PDF

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

Synthesis of Monodispersed and Spherical $SiO_2-coated Fe_2O_3$ Nanoparticle

  • Han, Yang Su;Yun, Seon Mi;Kim, Dong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1193-1198
    • /
    • 2000
  • The preparation of nanocrystalline hematite, ${\alpha}-Fe_2O_3$, paricles and their surface coating with silica layers are described. The hematite particles with the size of 30~60 nm are firstly prepared by thermal decomposition of trinuclear acetate-hydroxo iron (III) nitrate complex, $[Fe_3$(OCOCH_3)_7$OH${\cdot}$2H_2O]NO_3$, at $400^{\circ}C$. Subsequently the hematite surfaces are coated with siliva layers by a controlled hydrolysis and condensation reaction of TEOS with varying the TEOS concentration and pH. Monodispersed and spherical $SiO_2-coatedFe_2O_3$ particles with the average particle diameter of ~90 nm and extremely narrow size distribution can be obtained at the pH of 11 and the TEOS concentration of 0.68M, which are found to be the optimum conditions in the present study in achieving the homogeneous deposition of silica layers on hematite surfaces. Diffuse reflectance UV-Vis spectra reveal that the characteristic optical reflectance of ${\alpha}-Fe_2O_3$ particles is preserved almost constant even after coating the surfaces, suggesting that the $SiO_2$ layers can be regarded as protecting layers without degrading the optical properties of hematite particles.

Real-time Transformation of FePt Nanoparticles to L10 Phase by the Gas Phase Synthesis (기상합성공정을 이용한 FePt 나노입자의 실시간 L10 상변화)

  • Lee, Ki-Woo;Lee, Chang-Woo;Kim, Soon-Gil;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Real-time formation of $L1_0$ phase of FePt nanoparticles in the gas phase during ultrasonic-spray pyrolysis is first discussed in the present study. Without any post heat treatment, $L1_0$ phase of FePt nanoparticles appeared at the temperature above $900^{\circ}C$ in the gas phase synthesis. X-ray diffractometry (XRD) and transmission electron microscopy (TEM) studies revealed that FePt nanoparticles less than 10 nm in size contained small volume of $L1_0$ fct phase. However, in other samples obtained at the temperature below $900^{\circ}C$, iron oxide phase co-existed and no evidence of phase transformation was found. Thus, it is anticipated that the time of flight of particles required for crystallization and phase transformation was extended according to the increase of the collision rate. Finally, magnetic properties represented by coercivity and saturation magnetization and functional groups on the particle surface were discussed based on VSM and FT-IR results.